目录
前言
第0章 预备知识 1
0.1 Jordan-Chevalley分解 1
0.2 线性空间的张量积 5
0.3 实线性空间的复化 9
第1章 Lie代数的基本概念 12
1.1 Lie代数的定义 12
1.2 Lie代数的同态 18
1.3 幂零Lie代数 21
1.4 可解Lie代数与Lie定理 25
1.5 半单Lie代数 29
1.6 Lie代数的表示 34
第2章 复半单Lie代数的Dynkin图 39
2.1 Casimir元 39
2.2 Weyl定理及其应用 42
2.3 sl(2,C)的表示 46
2.4 复半单Lie代数的根空间分解 49
2.5 复半单Lie代数的根系 55
2.6 Dynkin图 61
2.7 Dynkin图的实现 66
2.8 Weyl群 71
第3章 复半单Lie代数的分类 75
3.1 Cartan子代数 75
3.2 共轭定理 79
3.3 复半单Lie代数的分类定理 83
3.4 Serre定理 90
第4章 实半单Lie代数简介 101
4.1 紧Lie代数 101
4.2 Cartan分解 104
4.3 Cartan子代数 109
4.4 Satake图 111
参考文献 118
索引 119