Chapter 1 Introduction1
1.1Background & Identification of the Current Issue1
1.2Viscosity,Newtonian & Non-Newtonian Liquids2
1.2.1General Introduction of Viscosity2
1.2.2Newtonian & Non-Newtonian Liquids5
1.2.3Different Models of Typical Non-Newtonian Liquids6
1.2.4Temperature Dependence of Liquid Viscosity8
1.2.5Engine Oils and Non-Linear Behaviors of Viscosity in Engine Oils9
1.3Conventional Methods10
1.3.1U-Tube Viscometer11
1.3.2Falling Ball Viscometers14
1.3.3Rotational Viscometers17
1.4Active Acoustic Wave (AW) Resonators as Viscometer and Current Research19
1.4.1Vibrating Viscometers19
1.4.2Current Research on AW Viscometer (Advantage over Traditional One,and Challenges)21
1.5Research Objectives25
References26
Chapter 2 Fundamental Study of Magnetostrictive Strip Resonance Behaviors and Location Effects in Pick-up Coils30
2.1Introductions30
2.2Configuration of Magnetostrictive Strip Sensor32
2.3Current Characterizations of Resonance Behaviors of Magnetostrictive Strips34
2.4Experimental and Measurement Setup35
2.4.1Lock-in Amplifier Method35
2.4.2Impedance Analyzer Method38
2.4.3Network Analyzer Method38
2.5Characterization and Experiment Results Discussion38
2.5.1Resonance Frequency of Magnetostrictive Sensor38
2.5.2Effect of External DC Bias Magnetic Field on Resonance Behaviors of Strip Sensor39
2.5.3Effect of AC Driving Magnetic Field on Resonance Behaviors of Strip Sensor43
2.5.3.1Lock-in Amplifier Method44
2.5.3.2Impedance Analyzer Method45
2.5.3.3Network Analyzer Method48
2.5.3.4Conclusion48
2.5.4Comparison of Impedance Analyzer Method and Lock-in Amplifier vMethod50
2.5.5Comparison of the Influence of Different Coils on Resonance Behaviors of Magnetostrictive Strip by Impedance Analyzer Method50
2.5.6Location Effect of Magnetostrictive Strip Sensor in Pick-up Coils53
2.6Conclusions56
References56
Chapter 3 Magnetostrictive Strip Sensors to Identify the Nonlinearity of Viscosity59
3.1Introduction59
3.2Experimental and Measurement Setup60
3.3Determination of Three Characteristic Frequencies61
3.4Comparison of the Performances of Different Length Magnetostrictive Strip Sensors in Oils64
3.5Comparison of the Performances of Different Length-ratio Magnetostrictive Strip Sensors in Oils67
3.6The Performances of 40mm×3mm×30μm Magnetostrictive Strip Sensor in Oils at Different Temperatures68
3.7Conclusions71
References72
Chapter 4 Piezoelectric Cantilever Sensors to Identify the Nonlinearity of Viscosity73
4.1Introduction73
4.2Configuration of Piezoelectric Cantilever Sensor74
4.3Theory76
4.4Experimental and Measurement Setup79
4.5The Performance Comparison of PZT Cantilevers with Same Length and Thickness but Different Width and Performance Comparison of PZT Cantilevers with Different Length but Same Width and Thickness81
4.6Conclusions85
References86
Chapter 5 Numerical Simulations to Identify the Nonlinearity of Viscosity87
5.1Introduction87
5.2Theoretical Model (in Newtonian & Non-Newtonian Liquids) and Numerical Simulation88
5.3Model in Newtonian Liquids and Numerical Simulation89
5.3.1The Study of Relationship of Three Characteristic Frequencies with B Value97
5.4Model in Non-Newtonian Liquids and Numerical Simulation100
References102
Chapter 6 Conclusions and Perspectives103