目录
前言
第1章 向量空间 1
1.1 定义与例子 1
1.2 向量间的线性关系 5
1.3 基与维数 8
1.4 子空间 14
1.5 商空间 18
1.6 线性函数 19
1.7 双线性型和二次型 25
第2章 线性算子 44
2.1 向量空间的线性映射 44
2.2 线性算子代数 50
2.3 不变子空间和特征向量 58
2.4 商算子和对偶算子 67
2.5 约当标准形 71
第3章 内积空间 85
3.1 欧几里得向量空间 85
3.2 埃尔米特向量空间 99
3.3 内积空间上的线性算子,I——自伴随算子 109
3.4 内积空间上的线性算子,II——保距算子 119
3.5 内积空间上的线性算子,III——正规算子 126
3.6 复化与实化 131
3.7 正交展开 139
3.8 正交投影和最小二乘法 146
3.9 正交多项式 150
3.10 几个自伴随算子 156
第4章 仿射空间与欧几里得仿射空间 161
4.1 仿射空间 161
4.2 欧几里得仿射空间 176
4.3 群与几何 184
4.4 凸集 202
4.5 伪欧几里得空间和闵可夫斯基空间 207
第5章 二次曲面 216
5.1 二次函数 216
5.2 仿射空间和欧几里得空间中的二次曲面 224
5.3 射影空间 241
5.4 射影空间的二次曲面 258
第6章 张量 263
6.1 张量计算初步 263
6.2 向量空间的张量积 272
6.3 张量的收缩、对称化与交错化、张量代数 279
6.4 外代数 292
参考文献 312
附录 313