通俗地讲,泛函分析也可以叫做无穷维空间的几何学和微积分学或无限维的分析学,主要研究无限维线性空间上的泛函数和算子理论。它综合分析学、几何和代数的观点研究无穷维向量空间上的函数、算子和极限理论,至今已经发展成为一门理论完备、内容丰富的数学分支。《应用泛函分析》主要介绍了Lebesgue测度与Lebesgue积分,度量空间与Banach空间,Hilbert空间,线性算子理论基础,同时介绍了广义函数与Sobolev空间,小波分析基础等等,各章后面配有适量的习题,供师生参考使用。《应用泛函分析》作为理工科研究生近代分析数学特别是泛函分析的基础教材,涉及内容较为宽泛,注重基础理论和应用,例题较多,各章内容相对独立,经过选择和取舍,适合不同专业的同学选用。