目录
序言
第1章 数和极限 1
1.1 不等式 1
1.1.1 不等式的法则 3
1.1.2 三角不等式 3
1.1.3 算术-几何平均值不等式 4
问题 7
1.2 实数和最小上界定理 10
1.2.1 实数作为无限小数 10
1.2.2 最小上界定理 12
1.2.3 舍入 14
问题 16
1.3 数列及其极限 17
1.3.1 的近似 20
1.3.2 数列与级数 21
1.3.3 区间套 32
1.3.4 柯西数列 33
问题 35
1.4 数字e 39
问题 42
第2章 函数及其连续性 45
2.1 函数的概念 45
2.1.1 有界函数 48
2.1.2 函数的运算 49
问题 51
2.2 连续性 52
2.2.1 用极限定义函数在一点处的连续性 54
2.2.2 区间上的连续性 57
2.2.3 介值定理与最值定理 58
问题 61
2.3 函数的复合及逆 63
2.3.1 反函数 66
问题 70
2.4 正弦与余弦 71
问题 74
2.5 指数函数 75
2.5.1 放射性衰变 76
2.5.2 细菌繁殖 76
2.5.3 代数定义 77
2.5.4 指数型增长 78
2.5.5 对数 80
问题 84
2.6 函数列及其极限 85
2.6.1 函数列 85
2.6.2 函数项级数 92
2.6.3 函数与 96
问题 101
第3章 导数和微分 105
3.1 导数的概念 105
3.1.1 几何意义 107
3.1.2 可导与连续 110
3.1.3 导数的应用 112
问题 117
3.2 求导法则 119
3.2.1 和、积与商的导数 120
3.2.2 复合函数的导数 124
3.2.3 高阶导数及记号 127
问题 128
3.3 函数ex和lnx的导数 132
3.3.1 函数ex的导数 132
3.3.2 函数lnx的导数 133
3.3.3 幂函数的导数 135
3.3.4 微分方程y'= ky 135
问题 136
3.4 三角函数的导数 138
3.4.1 正弦和余弦函数的导数 138
3.4.2 微分方程y\