1 绪论
1.1 概述
1.2 多孔材料的形成机理
1.2.1 液晶模板机理
1.2.2 协同作用机理
1.2.3 电荷密度匹配机理
1.3 多孔材料的制备方法
1.3.1 溶胶-凝胶法
1.3.2 热分解法
1.3.3 直接合成法
1.3.4 沉积法
1.4 多孔材料的催化性能研究
1.4.1 电催化
1.4.2 光催化
1.4.3 其他催化
1.5 多孔材料在储能中的应用
1.5.1 金属-空气电池
1.5.2 燃料电池
1.5.3 超级电容器
1.5.4 锂离子电池
1.6 本书主要内容
参考文献
2 实验部分
2.1 实验材料与设备
2.2 材料形貌与结构表征
2.3 电化学性能表征方法
参考文献
3 石墨氮掺杂微孔/介孔纳米网状碳材料的制备及其电催化性能研究
3.1 概述
3.2 g-N-MM-Cnet催化剂及对比样品的制备
3.2.1 g-N-MM-Cnet催化剂的制备流程图
3.2.2 g-N-MM-Cnet催化剂及参比样品的制备
3.3 结果与讨论
3.3.1 硬模板剂对g-N-MM-Cnet催化剂形貌的影响
3.3.2 P123对g-N-MM-Cnet催化剂形貌的影响
3.3.3 DCDA对g-N-MM-Cnet催化剂形貌的影响
3.3.4 煅烧温度对g-N-MM-Cnet催化剂形貌和结构的影响
3.3.5 参比样品Ir/C催化剂
3.3.6 g-N-MM-Cnet的电催化性能研究
3.3.7 g-N-MM-Cnet在Zn-air电池中的应用
3.4 本章小结
参考文献
4 氮掺杂微孔/介孔网状碳材料的制备和电化学性能研究
4.1 概述
4.2 N-MM-Cnet材料的制备
4.3 结果与讨论
4.3.1 N-MM-Cnet材料的形貌及结构表征
4.3.2 g-N-MM-Cnet材料的电化学性能
4.3.3 g-N-MM-Cnet材料的循环稳定性
4.3.4 两电极(对称性)超级电容器
4.4 本章小结
参考文献
5 使用超分子自组装模板剂制备TiO2空心材料及电催化性能研究
5.1 概述
5.2 TiO2空心材料的制备
5.2.1 TiO2空心材料的制备流程图
5.2.2 三聚氰酸-三聚氰胺及对比模板剂的制备
5.2.3 TiO7空心材料的制备
5.3 结果与讨论
5.3.1 CM化合物的表征
5.3.2 CM化合物@TiO2材料的表征
5.3.3 TiO2空心材料的电催化性能
5.3.4 CM化合物@TiO2材料(过渡金属离子掺杂TiO2)的性能
5.3.5 TiO2和过渡金属掺杂TiO2空心结构材料的性能表征
5.3.6 Co-TiO2-400空心结构材料优异电催化性能的来由
5.3.7 Co-TiO2-400空心结构材料的光催化性能的研究
5.4 本章小结
参考文献
6 Co2+掺杂TiO2纳米颗粒的电催化性能研究
6.1 概述
6.2 催化剂的制备
6.3 结果与讨论
6.3.1 Co2+掺杂TiO2纳米颗粒形貌表征
6.3.2 Co2+掺杂TiO2纳米颗粒的结构表征
6.3.3 Co2+掺杂TiO2纳米颗粒的电催化性能
6.3.4 Co2+掺杂TiO2纳米颗粒的锌-空气电池性能
6.4 本章小结
参考文献
7 TiN/NC复合材料的制备及其储锂性能研究
7.1 概述
7.2 TiN@NC复合材料的制备
7.3 结果与讨论
7.3.1 TiN@NC复合材料的形貌表征
7.3.2 TiN@NC复合材料的结构表征
7.3.3 TiN@NC复合材料的电化学性能
7.4 本章小结
参考文献