目录
前言
第1章 行列式1
1.1 二阶与三阶行列式 1
1.2 全排列及其逆序数 5
1.3 对换 7
1.4 n阶行列式的定义8
1.5 行列式的性质 11
1.6 行列式按行(列)展开 17
1.7 克拉默法则 23
1.8* 一般n阶行列式计算介绍27
1.9* 相关结论的证明29
复习题1 35
第1章阅读材料* 36
第2章 矩阵及其运算 39
2.1矩阵 39
2.2 矩阵的运算 43
2.3 逆矩阵 51
2.4 分块矩阵 57
2.5
* 相关理论证明 61
复习题2 63
第2章阅读材料* 65
第3章 矩阵的初等变换与线性方程组 70
3.1 矩阵的初等变换 70
3.2 初等矩阵 74
3.3 矩阵的秩 80
3.4 线性方程组的解 85
3.5* 相关结论证明 91
复习题3 96
第3章阅读材料* 98
第4章 向量组的线性相关性 101
4.1 向量组及其线性组合 101
4.2 向量组的线性相关性 106
4.3 向量组的秩 110
4.4 向量空间 114
4.5 线性方程组解的结构 117
4.6* 相关结论证明 123
复习题4 126
第4章阅读材料* 127
第5章 相似矩阵和二次型 129
5.1 向量的内积、长度及正交性 129
5.2 方阵的特征值与特征向量 135
5.3 相似矩阵 140
5.4 对称矩阵的对角化 144
5.5 二次型及其标准形 148
5.6 用配方法化二次型成标准形 154
5.7 正定二次型 156
5.8* 相关结论证明 158
复习题5 162
第5章阅读材料* 164
附录 166
附录A 本书各章内容之间的联系及本书编写思路 166
附录B 习题参考答案 167
参考文献 180