注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络数据库数据库设计/管理数据分析技术:Python数据分析项目化教程

数据分析技术:Python数据分析项目化教程

数据分析技术:Python数据分析项目化教程

定 价:¥36.80

作 者: 薛国伟
出版社: 高等教育出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787040507478 出版时间: 2019-03-01 包装: 平装
开本: 16开 页数: 176 字数:  

内容简介

  《数据分析技术:Python数据分析项目化教程》从Python的相关技能开始,介绍使用Python进行数据分析的知识、技术和技能。《数据分析技术:Python数据分析项目化教程》主要包括安装、配置Python及第三方扩展包的方法;Python语言基础;使用Python进行数据分析的基本方法;使用numpy进行数据分析的基本方法;使用pandas进行数据分析的基本方法和数据可视化技术。《数据分析技术:Python数据分析项目化教程》为新形态一体化教材,配有丰富的教学资源,包括微课教学课件、案例素材、课后习题及习题答案等。与《数据分析技术:Python数据分析项目化教程》配套的数字课程已在“智慧职教”网站上线,学习者可以登录网站进行学习,也可以通过扫描书中二维码观看教学视频.详见“智慧职教服务指南”。《数据分析技术:Python数据分析项目化教程》适合Python初、中级用户使用,可作为高职院校软件技术专业、大数据技术与应用专业的专业教材,也可供软件设计学习者参考使用。

作者简介

暂缺《数据分析技术:Python数据分析项目化教程》作者简介

图书目录

项目1 搭建Python数据分析开发环境
1.1 情境描述
1.2 任务分析
1.3 任务实施:安装并配置Pvthon开发环境
1.3.1 安装Microsoft Visual C++Build Tools
1.3.2 安装Pvthon
1.3.3 设置环境变量
1.3.4 安装nurrlpy
1.3.5 安装pandas
1.3.6 安装Matplotlib
1.4 拓展任务:安装Alacollda开发环境
1.5 知识储备
1.5.1 IDI-E开发环境介绍
1.5.2 使用pip进行第三方库管理
1.5.3 Arlacorlda开发环境介绍
1.5.4 使用cor、da进行第三方库管理
1.6 课后练习
项目2 点餐系统
2.1 情境描述
2.2 任务分析
2.3 任务实施
2.3.1 设计入口程序
2.3.2 设计费用计算函数
2.3.3 设计点餐模块
2.3.4 设计打印报告模块
2.3.5 设计导出报表模块
2.3.6 退出程序
2.4 知识储备
2.4.1 pytt]on解释器
2.4.2 引入模块
2.4.3 语言基础
2.4.4 控制流
2.4.5 三元表达式
2.4.6 文件操作
2.5 课后练习
项目3 景区游客量统计
3.1 情境描述
3.2 任务分析
3.3 任务实施:使用Python实现
3.3.1 计算九寨沟的游客总量
3.3.2 计算其他景区的游客总数
3.4 任务实施:使用numpy和parldas包实现
3.4.1 使用numpy包实现
3.4.2 使用parldas包实现
3.4.3 3种实现方法的比较
3.5 知识储备
3.5.1 数据分析技术简介
3.5.2 CSV文件介绍
3.5.3 Excel文件介绍
3.5.4 Python常用数值类型
3.5.5 字符串类型
3.5.6 布尔值类型
3.5.7 日期和时间类型
3.5.8 元组
3.5.9 列表
3.5.1 0字典
3.5.1 1集合
3.6 课后练习
项目4 新浪股票分析
4.1 情境描述
4.2 任务分析
4.3 任务实施
4.3.1 计算收盘价常用统计量
4.3.2 计算股价最高值和最低值
4.3.3 计算成交量加权平均价
4.3.4 “周末效应”分析
4.4 知识储备
4.4.1 nurrlpy简介
4.4.2 使用nurrlpy数组对象
4.4.3 使用nurrlpy的函数读写文件
4.5 课后练习
项目5 井下环境监测数据处理
5.1 情境描述
5.2 任务分析
5.3 任务实施
5.3.1 井下温度缺失值和异常值处理
5.3.2 处理其余井下环境指标数据
5.3.3 使用pa rldas处理缺失数据
5.4 知识储备
5.4.1 parldas介绍
5.4.2 parldas的Series对象
5.4.3 parldas的DataFrame对象
5.4.4 使用pa r]das的函数读写文件
5.5 课后练习
项目6 超市商品销售额相关性分析
6.1 情境描述
6.2 任务分析
6.3 任务实施
6.3.1 分析水果和化妆品销售额的相关性
6.3.2 分析化妆品和蔬菜的相关性
6.3.3 分析化妆品和海鲜销售额的相关性
6.3.4 使用parldas分析多种商品销售额的相关性
6.4 知识储备
6.4.1 方差、标准差、协方差、相关系数
6.4.2 使用Matplotlib进行数据可视化
6.5 课后练习
参考文献

本目录推荐