群体智能算法是模拟自然生物种群智能行为的优化方法,具有良好的寻优性能,因此群体智能算法在求解大规模复杂问题时具有较高的效率。《群体智能算法改进及其应用》在群体智能的基础上,针对智能优化算法、聚类算法、复杂网络和朴素贝叶斯分类进行理论研究和应用研究。《群体智能算法改进及其应用》重点研究群体智能算法中的人工蜂群算法理论改进和应用研究,提出基于人工蜂群的密度峰值聚类算法,并将其应用到民营上市公司的聚类分析中。另外,《群体智能算法改进及其应用》还提出基于复杂网络和朴素贝叶斯分类的人工蜂群算法,使用复杂网络理论,降低供应链网络结构的复杂度;引入朴素贝叶斯分类,大幅度地加快算法的寻优速度,并将其应用于供应链网络优化决策中,都取得了令人满意的结果。