注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络家庭与办公软件空间数据挖掘理论与应用(第三版)

空间数据挖掘理论与应用(第三版)

空间数据挖掘理论与应用(第三版)

定 价:¥99.00

作 者: 李德仁,王树良,李德毅 著
出版社: 科学出版社
丛编项: 地球观测与导航技术丛书
标 签: 暂缺

购买这本书可以去


ISBN: 9787030599995 出版时间: 2019-06-01 包装: 精装
开本: 16开 页数: 352 字数:  

内容简介

  面向大数据,《空间数据挖掘理论与应用(第三版)》提出数据场、云模型、挖掘视角、李德仁法等空间数据挖掘的新方法,揭示在不同层次“规则+例外”的挖掘机理,总结数据源的内容和管理,研究遥感图像的大规模智能检索、地物分类和变化检测,时空分布的视频数据挖掘,夜光遥感图像挖掘,滑坡监测数据挖掘,以及GIS数据的关联规则、分布规则、决策规则和聚类挖掘,成功用于“一带一路”沿线的城市发展评估、国际热点区域的人道主义灾难评估、公共安全事件的监测预警、无人机视频的动态目标跟踪、火车车轮的形变检测、土地利用的分类与变化检测、滑坡监测的数据挖掘、银行选址的预测评估、区域经济分析等领域,研制了空间数据挖掘系统SDMsystem,实现了从空间大数据向大价值的实质转换。

作者简介

暂缺《空间数据挖掘理论与应用(第三版)》作者简介

图书目录

目录
“地球观测与导航技术丛书”编写说明
序一
序二
序三
序四
第三版前言
第二版前言
第一版前言
第1章 绪论 1
1.1 空间数据挖掘的由来 1
1.2 空间数据挖掘的价值 8
1.3 空间数据挖掘的难题 10
1.4 本书的内容和组织结构 13
第2章 空间数据挖掘基础 16
2.1 基本定义和性质 16
2.2 空间数据挖掘金字塔 19
2.3 空间数据挖掘视角 23
2.4 空间数据挖掘的知识类型 30
2.5 空间知识的表达 33
2.6 空间数据挖掘与相关学科的关系 35
第3章 空间数据挖掘的数据源 39
3.1 空间数据的内容和特性 39
3.2 空间数据获取 42
3.3 空间数据结构 44
3.4 空间数据模型 47
3.5 空间数据的组织和管理 52
3.6 国家空间数据基础设施 57
3.7 中国国家空间数据基础设施 62
3.8 从空间数据基础设施到大数据 66
第4章 空间数据清理 71
4.1 空间数据的污染问题 71
4.2 空间数据清理的基本内容 76
4.3 空间观测数据的清理 78
4.4 遥感图像的清理 94
4.5 基于DHP法的空间数据选择 107
第5章 空间数据挖掘可用的理论方法 112
5.1 确定集合论 112
5.2 扩展集合论 118
5.3 仿生学方法 122
5.4 知识图谱 127
5.5 可视化 127
5.6 空间数据挖掘系统 128
第6章 数据场 132
6.1 数据辐射 132
6.2 数据场的概念和性质 135
6.3 数据场的场强和势 139
第7章 云模型 147
7.1 随机性和模糊性 147
7.2 云模型的概念 148
7.3 云模型的类型 151
7.4 云发生器 155
7.5 云变换 161
7.6 基于云模型的不确定推理 163
第8章 地学粗空间和概念格 166
8.1 地学粗空间的内涵 166
8.2 地学粗空间在地球空间信息学的外延 176
8.3 概念格及其性质 178
8.4 概念格的构建 185
第9章 遥感图像智能检索 196
9.1 图像检索特征 196
9.2 遥感图像统计检索 199
9.3 遥感图像深度检索 206
第10章 遥感图像分类 212
10.1 基于归纳学习和贝叶斯方法的图像分类 212
10.2 基于云模型的图像分类 216
10.3 基于粗神经网络的图像分类 218
10.4 基于地学粗空间的专题提取 219
第11章 遥感图像变化检测 221
11.1 变化检测的方法体系 221
11.2 面向对象机器学习的遥感图像变化检测 224
11.3 顾及空间特征的时间序列变化检测 230
11.4 面向无人机视频的动态目标跟踪 237
第12章 时空分布的视频数据挖掘 244
12.1 视频数据智能压缩与云存储 244
12.2 基于内容的视频数据检索 245
12.3 时空视频数据挖掘 247
12.4 视频人脸超分辨率识别与表情挖掘 249
12.5 基于长程背景字典的卫星视频编码 262
第13章 夜光遥感图像挖掘 267
13.1 夜光遥感图像挖掘的必要性 267
13.2 中国区域经济分析 268
13.3 “一带一路”城市发展评估 271
13.4 人道主义灾难评估 274
第14章 宝塔滑坡的监测数据挖掘 279
14.1 宝塔滑坡 279
14.2 滑坡监测数据挖掘的可行性 280
14.3 宝塔滑坡形变监测数据挖掘的视角 283
14.4 同点异时同向的视角挖掘 287
14.5 异点同时同向的视角挖掘 293
14.6 异点异时同向的视角挖掘 298
14.7 基于数据场的例外挖掘 301
14.8 宝塔滑坡形变监测的知识及讨论 305
第15章 GIS数据挖掘 311
15.1 空间关联规则挖掘 311
15.2 基于归纳学习挖掘空间分布规则 320
15.3 基于粗集发现决策知识 324
15.4 空间聚类知识挖掘 331
参考文献 342
后记 352
Contents
Foreword on the book series
Foreword I
Foreword II
Foreword III
Foreword IV
Preface of the 3rd edition
Preface of the 2nd edition
Preface of the 1st edition
Chapter 1 Introduction 1
1.1 The origin of spatial data mining 1
1.2 The value from spatial data mining 8
1.3 Problems in spatial data mining 10
1.4 Content and organization of the book 13
Chapter 2 Principles of Spatial Data Mining 16
2.1 Fundamental definitions and properties 16
2.2 Spatial data mining pyramid 19
2.3 Spatial data mining views 23
2.4 Knowledge form of spatial data mining 30
2.5 Representation of spatial knowledge 33
2.6 Relationship between spatial data mining and related disciplines 35
Chapter 3 Data Sources for Spatial Data Mining 39
3.1 Contents and characteristics of spatial data 39
3.2 Spatial data acquisition 42
3.3 Spatial data structure 44
3.4 Spatial data model 47
3.5 Organization and management of spatial data 52
3.6 National Spatial Data Infrastructure 57
3.7 Chinese National Spatial Data Infrastructure 62
3.8 From spatial data infrastructure to big data 66
Chapter 4 Spatial Data Cleaning 71
4.1 Pollution of spatial data 71
4.2 Basic contents of spatial data cleaning 76
4.3 Cleaning spatial observed data 78
4.4 Cleaning remote sensing images 94
4.5 Spatial data selection with DHPmethod 107
Chapter 5 Theoretical Methods Available for Spatial Data Mining 112
5.1 Crisp set theory 112
5.2 Extended set theory 118
5.3 Bionics 122
5.4 Knowledge Map 127
5.5 Visualization 127
5.6 Spatial data mining system 128
Chapter 6 Data Field 132
6.1 Data radiation 132
6.2 Concept and nature of the data field 135
6.3 Field strength and potential of the data field 139
Chapter 7 Cloud Model 147
7.1 Randomness and fuzziness 147
7.2 Concept of the cloud model 148
7.3 Types of cloud model 151
7.4 Cloud generator 155
7.5 Cloud transformation 161
7.6 Uncertain reasoning with cloud model 163
Chapter 8 Geo-rough space and conceptual lattice 166
8.1 The connotation of geo-rough space 166
8.2 Extension of geo-rough space in geoscience 176
8.3 Concept lattice and its nature 178
8.4 Construction of concept lattice 185
Chapter 9 Intelligent Retrieval for Remote Sensing Image 196
9.1 Image retrieval features 196
9.2 Remote sensing image statistical search 199
9.3 Remote sensing image deep retrieval 206
Chapter 10 Classification for Remote Sensing Image 212
10.1 Image classification based on inductive learning and Bayesian methods 212
10.2 Image classification based on cloud model 216
10.3 Image classification based on rough neural network 218
10.4 Thematic extraction based on geo-rough space 219
Chapter 11 Change Detection for Remote Sensing Image 221
11.1 Methodology for change detection 221
11.2 Image change detection with object-oriented machine learning 224
11.3 Sequential change detection und

本目录推荐