随着AI技术的普及,如何快速理解、掌握并应用AI技术,成为绝大多数程序员亟需解决的问题。本书基于Keras框架并以代码实现为核心,详细解答程序员学习AI算法时的常见问题,对机器学习、深度神经网络等概念在实际项目中的应用建立清晰的逻辑体系。《程序员的AI书:从代码开始》分为上下两篇,上篇(第1~4章)可帮助读者理解并独立开发较简单的机器学习应用,下篇(第5~9章)则聚焦于AI技术的三大热点领域:推荐系统、自然语言处理(NLP)及图像处理。其中,第1章通过具体实例对Keras的机器学习实现进行快速介绍并给出整体概念;第2章从简单的神经元开始,以实际问题和代码实现为引导,逐步过渡到多层神经网络的具体实现上,从代码层面讲解神经网络的工作模式;第3章讲解Keras的核心概念和使用方法,帮助读者快速入门Keras;第4章讲解机器学习中的常见概念、定义及算法;第5章介绍推荐系统的常见方案,包括协同过滤的不同实现及Wide&Deep模型等;第6章讲解循环神经网络(RNN)的原理及Seq2Seq、Attention等技术在自然语言处理中的应用;第7~8章针对图像处理的分类及目标识别进行深度讨论,从代码层面分析Faster RCNN及YOLO v3这两种典型识别算法;第9章针对AI模型的工程部署问题,引入TensorFlow Serving并进行介绍。《程序员的AI书:从代码开始》主要面向希望学习AI开发或者转型算法的程序员,也可以作为Keras教材,帮助读者学习Keras在不同领域的具体应用。