注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术航空、航天航空、航天医学药物设计:方法、概念和作用模式

药物设计:方法、概念和作用模式

药物设计:方法、概念和作用模式

定 价:¥380.00

作 者: (德)格哈德·克勒贝 著
出版社: 科学出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787030608468 出版时间: 2019-06-01 包装: 线装
开本: 16开 页数: 744 字数:  

内容简介

  药物设计是一门科学,一门技术,更是一门多学科融合的艺术。众所周知,发明是一种创造性行为的产物,而发现则是对已知世界的探索。药物设计紧紧围绕发明和发现两个过程,旨在建立一套来源于现有知识和技术但又高于现有知识和技术的方法。此外,从事药物设计的科学家的创造性和直觉也时常起到决定性的作用。药物是一种能通过引起某种生理作用从而影响生命系统的物质,本书重点剖析了药物设计方法及药物在有机体内的作用模式,在结构设置和出发点上与传统的药物化学书籍不同。《BR》全书重点介绍了药物研究的基础、先导化合物的发现、常用的实验和理论、构效关系和设计方法、药物的作用方式,以及基于结构设计的诸多经典案例。

作者简介

暂缺《药物设计:方法、概念和作用模式》作者简介

图书目录

译者的话

中文版序

Preface

引言

介绍

第一部分 药物研究基础

第1章 药物研究:昨天、今天和明天 3

1.1 这一切都始于传统药物 4

1.2 动物实验与药物研发 5

1.3 抗传染病的斗争 7

1.4 药物研究中的生物学概念 8

1.5 体外模型和分子测试系统 10

1.6 精神疾病的成功治疗 11

1.7 建模与计算机辅助设计 12

1.8 药物研究和药物市场的成果 15

1.9 有争议的药物 18

1.10 概要 18

第2章 早期药物研究大多靠偶然发现 20

2.1 乙酰苯胺而不是萘:一个有价值的新退热剂 20

2.2 麻醉剂和镇静剂:纯粹的意外发现 21

2.3 富有成效的合作:染料和药物 22

2.4 真菌杀死细菌并对合成有帮助 24

2.5 致幻剂麦角酸二乙基酰胺的发现 25

2.6 合成路线决定了药物的结构 26

2.7 意外的重排反应生成了新药 27

2.8 一些因意外而被发现的新药 28

2.9 如果没有意外发现的能力,我们会如何? 29

2.10 概要 30

第3章 经典药物研究 31

3.1 阿司匹林:一个永无止境的故事 31

3.2 疟疾:成功与失败 35

3.3 吗啡类似物:分子到片段 39

3.4 可卡因:药物和有价值的先导结构 44

3.5 H2拮抗剂:无手术的溃疡治疗 46

3.6 概要 50

第4章 蛋白质—配体相互作用是药物效应的基础 52

4.1 锁钥原理 53

4.2 膜的重要性 55

4.3 结合常数Ki反映蛋白质—配体相互作用的强度 56

4.4 重要的蛋白质—配体相互作用类型 58

4.5 蛋白质—配体相互作用的强度 60

4.6 水是所有问题所在 61

4.7 蛋白质—配体相互作用的熵效应 62

4.8 氢键对蛋白质—配体相互作用有何贡献? 64

4.9 蛋白质—配体疏水相互作用的强度 68

4.10 结合和移动性:熵焓补偿 69

4.11 对药物设计的启示 72

4.12 概要 73

第5章 旋光性(手性)和生物效应 75

5.1 Louis Pasteur晶体分离实验 75

5.2 基于结构的旋光性 76

5.3 对映体的分离、化学合成及生物合成 80

5.4 通过脂酶拆分外消旋体 80

5.5 对映异构体具有不同的生物效应 84

5.6 为什么镜像异构体对于受体而言是有区别的? 89

5.7 在手性世界中畅游 92

5.8 概要 93

第二部分 先导化合物的寻找

第6章 寻找先导化合物的经典方法 97

6.1 药物发现的开始:经由人体筛选出的苗头化合物 97

6.2 从植物中发现的先导化合物 98

6.3 来自动物毒液及其他成分的先导化合物 100

6.4 来源于微生物的先导化合物 101

6.5 从染料及其制备中间体发现新药物 103

6.6 模仿:内源性配体功能 105

6.7 不良反应提示新的治疗方案 107

6.8 从传统研究到化合物库的筛选 108

6.9 概要 109

第7章 先导化合物开发涉及的筛选技术 111

7.1 通过高通量筛选(HTS)生物活性 111

7.2 颜色改变显示活性 112

7.3 快中求快:用最少的材料测试更多的化合物 114

7.4 从结合到功能:在完整细胞中测试 115

7.5 回到全动物模型:在线虫上筛选 115

7.6 虚拟库的计算机筛选 117

7.7 生物物理学筛选 119

7.8 利用磁共振筛选 121

7.9 蛋白质晶体筛选小分子片段 122

7.10 拴系配体探索蛋白质表面 125

7.11 概要 128

第8章 先导化合物的结构优化 130

8.1 药物优化策略 130

8.2 原子和官能团的电子等排替换 131

8.3 芳香族取代基的系统性变化 133

8.4 活性和选择性的优化 134

8.5 从激动剂到拮抗剂的优化 137

8.6 生物利用度和药效持续时间的优化 139

8.7 药效团空间结构的变化 140

8.8 结合位点和结合动力学的亲和力,焓和熵的优化 140

8.9 概要 144

第9章 前药设计 146

9.1 药物代谢基础 146

9.2 酯类是理想的前药 148

9.3 化学包裹:多种前药策略 152

9.4 L—DOPA疗法:一个聪明的前药概念 154

9.5 药物靶向,特洛伊木马和前体前药 155

9.6 概要 159

第10章 模拟肽 161

10.1 多肽相关的疗法 161

10.2 模拟肽设计 163

10.3 变化的第一步:修饰侧链 164

10.4 更大胆的步骤:修饰主链 165

10.5 通过锁定构象以固定骨架 167

10.6 通过拟肽设计干扰蛋白质—蛋白质相互作用 169

10.7 通过丙氨酸扫描追踪选择性NK受体拮抗剂 172

10.8 CAVEAT:理想的拟肽结构生成器 175

10.9 拟肽设计:君在何处? 176

10.10 概要 176

第三部分 实验与理论方法

第11章 组合化学:大数字化学 181

11.1 大自然如何产生化合物多样性 182

11.2 以蛋白质的生物合成为工具构建化合物库 182

11.3 有机化学的另一个角度:随机指导合成一系列化合物的混合物 183

11.4 化学空间包含了什么? 184

11.5 固相负载的化合物库:完全转化与简单纯化 185

11.6 固相负载的化合物库需要复杂的合成策略 186

11.7 固相负载的化合物库中,哪个化合物具有生物活性? 189

11.8 多样性的组合库:合成化学的挑战 190

11.9 G蛋白偶联受体的纳摩尔(nmol/L)级配体 190

11.10 比卡托普利活性更优:从取代吡咯烷组合库中得到的苗头化合物 193

11.11 平行反应还是组合化学,在溶液中还是在固相载体上? 193

11.12 蛋白质主动寻找其最优配体:点击化学和动态组合化学 195

11.13 概要 198

第12章 药物研发中的基因技术 200

12.1 基因技术的历史和基础 201

12.2 基因技术:药物设计中的关键技术 203

12.3 基因组项目破译生物结构 204

12.4 人类蛋白质组学的生物空间包含什么? 205

12.5 插入、敲除:治疗概念的验证 209

12.6 分子测试系统的重组蛋白 210

12.7 通过RNA干扰沉默基因 211

12.8 蛋白质组学和代谢组学 212

12.9 芯片上的表达模式:微阵列技术 215

12.10 SNPs和多态性:使我们有所不同 216

12.11 个人基因组:获得个体治疗? 217

12.12 遗传差异成为疾病 218

12.13 表观遗传学:生活和环境影响基因活动会在生命之书中作一个标记 219

12.14 基因治疗的范围和限制 221

12.15 概要 222

第13章 结构测定的实验方法 225

13.1 晶体:美在其外,内有乾坤 225

13.2 正如墙纸:对称性决定晶体堆积 227

13.3 晶格的X射线衍射 228

13.4 晶体结构分析:对衍射图样的空间排列和强度的评价 231

13.5 晶体衍射能力和分辨率决定了晶体结构的精确度 232

13.6 电子显微镜:用二维晶体构建膜蛋白结构 237

13.7 溶液中的结构:NMR波谱的共振实验 238

13.8 从光谱到结构:原子间相对距离到几何空间的衍变 239

13.9 晶体结构或NMR结构与生理状态下结构的相关性如何? 241

13.10 概要 243

第14章 生物大分子的三维结构 245

14.1 酰胺键:蛋白质的骨架 245

14.2 蛋白质在空间折叠形成α螺旋和β折叠 246

14.3 通过折叠花式和结构域从二级结构到三级结构和四级结构 250

14.4 蛋白质的结构和生物学功能是否相关? 252

14.5 蛋白酶对底物的识别和剪切:精致的结合口袋 255

14.6 从底物到抑制剂:底物库的筛选 256

14.7 当晶体开始舞动起来:从静止的晶体结构窥探其动态变化及反应特性 256

14.8 解决同样问题的方案:具有不同折叠的丝氨酸蛋白酶有同样的功能 261

14.9 DNA结构作为药物靶点 262

14.10 概要 264

第15章 分子模拟 266

15.1 三维结构模型是化学研究的利器 266

15.2 分子模拟的策略 267

15.3 基于知识的方法 268

15.4 基于力场的方法 269

15.5 量子化学方法 271

15.6 计算分子的性质 272

15.7 分子动力学:模拟分子运动 274

15.8 柔性蛋白质在水中的动力学 276

15.9 模型和模拟:区别在哪里 279

15.10 概要 279

第16章 构象分析 281

16.1 多个可旋转键产生大量的构象 282

16.2 优势构象是某个分子的局部能量最低点 282

16.3 怎样有效地扫描构象空间? 284

16.4 是否有必要搜寻全部构象空间? 284

16.5 搜索出受体结合状态下局部能量最低点的难点 286

16.6 利用基于知识的方法来有效地搜索相关构象 287

16.7 构象搜索的结果是什么? 288

16.8 概要 289

第四部分 构效关系和设计方法

第17章 药效团和分子比对 293

17.1 药效团将药物分子锚定在结合口袋里 293

17.2 药物分子的结构叠合 294

17.3 分子体积的逻辑运算 296

17.4 构象转变对药效团的影响 297

17.5 系统构象搜寻和药效团假说:“活性类似物方法” 299

17.6 分子的识别特征和分子的相似度 300

17.7 基于识别特征的自动分子比较和叠合 302

17.8 刚性类似物显示生物活性构象 303

17.9 如果缺少刚性类似物:模型化合物阐明活性构象 304

17.10 药效团取决于蛋白质结构:结合口袋的“热点”分析 304

17.11 用药效团模型搜索数据库产生新型先导化合物 309

17.12 概要 310

第18章 定量构效关系 311

18.1 生物碱的构效关系 311

18.2 从Richet、Meyer和Overton 到Hammett和Hansch 312

18.3 亲脂性的测定和计算 313

18.4 亲脂性和生物活性 314

18.5 Hansch分析和Free—Wilson模型 314

18.6 分子空间构效关系 317

18.7 结构比对作为分子相互比较的先决条件 318

18.8 结合亲和力作为化合物属性 318

18.9 如何进行CoMFA分析? 319

18.10 分子场作为


本目录推荐