注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络网络与数据通信网络服务人工智能技术应用导论

人工智能技术应用导论

人工智能技术应用导论

定 价:¥59.00

作 者: 聂明
出版社: 电子工业出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787121353116 出版时间: 2019-04-01 包装:
开本: 16开 页数: 388 字数:  

内容简介

  本书是“人工智能技术应用核心课程系列教材”的第一本,通过对人工智能基础概念、技术分类、开发平台、应用场景和开发运行环境及编程语言等的系统介绍,结合样板程序、经典案例的上机实践与代码分析,使初学者快速地对人工智能的技术全貌建立起系统的认识,并且掌握典型应用开发环境与平台的安装、配置及应用编程基础技术。本书非常适合:对人工智能、机器学习和深度学习感兴趣的读者;需要掌握人工智能通识知识的政府、企事业人员和高校学生;需要先行快速了解人工智能全貌、为后续深入学习奠定基础的高职相关专业的学生;期望快速进入智能文本分析、图像识别、语音处理、机器视觉、智能机器人等人工智能应用领域从事研发工作的工程技术人员。

作者简介

  聂明,男,1964年生人,中共党员,博士,三级教授, 现任南京信息职业技术学院人工智能学院(筹)院长,是全国工信和信息化职业教育教学指导委员会计算机专指委委员、江苏省\

图书目录

第1章 人工智能的产生与发展\t1
1.1 引言―激动人心的AI-2016\t1
1.2 人工智能的产生与发展\t6
1.3 认识人工智能的赋能\t9
1.4 人工智能、机器学习与深度学习\t18
1.5 算法、算力与大数据\t22
1.6 人工智能的产业生态\t24
1.6.1 人工智能产业链的三层划分\t24
1.6.2 基础层\t25
1.6.3 技术层\t29
1.6.4 应用层\t30
1.7 科技巨头在AI领域的布局\t31
1.7.1 国外科技巨头在AI领域的布局\t31
1.7.2 中国科技巨头在AI领域的布局\t33
1.7.3 全球各国人工智能政策\t37
1.7.4 中美竞赛\t38
1.8 人工智能技术应用的学习路径\t38
第2章 人工智能典型应用展现与体验\t40
2.1 科大讯飞语音综合服务开放平台\t40
2.2 指纹识别\t46
2.3 人脸识别系统\t49
2.4 电子商务人工智能应用\t50
2.5 商业智能\t55
2.6 智能商用服务机器人\t59
2.7 智能视频监控\t67
第3章 Python语言基础\t73
3.1 Python语言的产生与发展\t73
3.2 Python开发环境搭建\t74
3.3 Python常用语句\t81
3.4 列表、元组、字典和字符串\t87
3.5 Python的函数\t96
3.5.1 自定义函数\t96
3.5.2 Python常用内置函数\t100
3.6 Python矩阵运算\t103
3.7 Python库\t106
3.8 典型样板程序\t107
第4章 Python数据处理\t112
4.1 常见数据集简介\t112
4.1.1 MNIST数据集\t112
4.1.2 CTW数据集\t114
4.2 数据收集、整理与清洗\t115
4.2.1 数据收集\t115
4.2.2 数据整理\t122
4.2.3 数据清洗\t125
4.3 数据分析\t130
4.3.1 CSV文件\t130
4.3.2 Excel文件\t134
4.3.3 数据库\t139
4.4 数据可视化\t141
4.4.1 matplotlib库应用\t141
4.4.2 pandas库应用\t144
4.4.3 seaborn应用\t145
4.5 图像处理\t146
4.5.1 数字图像处理技术\t146
4.5.2 图像格式的转化\t147
4.5.3 Python图像处理\t149
第5章 机器学习及其典型算法应用\t155
5.1 机器学习简介\t155
5.1.1 基本含义\t155
5.1.2 应用场景\t155
5.1.3 机器学习类型\t157
5.1.4 相关术语\t159
5.1.5 scikit-learn平台\t160
5.2 分类任务\t163
5.2.1 分类的含义\t163
5.2.2 分类主要算法\t164
5.2.3 分类任务示例\t167
5.3 回归任务\t171
5.3.1 回归的含义\t171
5.3.2 回归主要算法\t171
5.3.3 回归任务示例\t171
5.4 聚类任务\t175
5.4.1 聚类的含义\t175
5.4.2 聚类主要算法\t175
5.4.3 聚类任务示例\t177
5.5 机器学习应用实例\t178
5.5.1 手写数字识别\t178
5.5.2 波士顿房价预测\t180
第6章 神经网络及其基础算法应用\t187
6.1 神经网络简介\t187
6.1.1 神经网络的概念与地位\t187
6.1.2 生物神经元\t188
6.1.3 人工神经元模型与神经网络\t189
6.1.4 感知器算法及应用示例\t191
6.2 前馈型神经网络\t195
6.2.1 前馈神经网络模型\t195
6.2.2 反向传播神经网络\t196
6.2.3 反向传播神经网络算法规则\t197
6.2.4 反向传播神经网络应用示例\t198
6.3 反馈型神经网络\t202
6.3.1 反馈神经网络模型\t202
6.3.2 离散Hopfield神经网络\t203
6.3.3 连续Hopfield神经网络\t208
6.3.4 用DHNN识别残缺的字母\t211
6.4 卷积神经网络\t214
6.4.1 卷积与卷积神经网络简介\t214
6.4.2 卷积神经网络的结构―以LeNet-5为例\t217
6.4.3 CNN的学习规则\t226
6.4.4 CNN应用示例\t228
第7章 深度学习及其典型算法应用\t232
7.1 神经网络可视化工具―PlayGround\t232
7.2 TensorFlow深度学习平台\t240
7.2.1 TensorFlow简介\t240
7.2.2 TensorFlow开发环境搭建\t242
7.2.3 TensorFlow的组成模型\t248
7.2.4 TensorFlow的HelloWorld程序示例\t258
7.2.5 TensorFlow实现线性回归\t259
7.2.6 TensorFlow实现全连接神经网络\t261
7.3 深度学习在MNIST图像识别中的应用\t263
7.3.1 MNIST数据集及其识别方法\t263
7.3.2 全连接神经网络识别MNIST图像\t266
7.3.3 卷积神经网络识别MNIST图像\t267
7.3.4 循环神经网络识别MNIST图像\t270
7.4 典型深度学习平台\t274
7.4.1 典型深度学习平台简介\t274
7.4.2 样板深度学习平台的体验与分析\t275
第8章 人工智能的机遇、挑战与未来\t284
8.1 人工智能的行业应用日趋火爆\t284
8.2 “智能代工”大潮来袭\t287
8.3 新IT、智联网与社会信息物理系统\t289
8.4 人工智能的未来\t293
8.4.1 发展趋势预测\t293
8.4.2 中国的人工智能布局\t295
8.4.3 全球人工智能的产业规模\t299
8.5 人工智能面临的挑战\t300
8.5.1 人工智能面临的人才挑战\t300
8.5.2 人工智能面临的技术挑战\t301
8.5.3 人工智能面临的法律、安全与伦理挑战\t301
8.6 拥抱人工智能的明天\t305
附录A VirtualBox虚拟机软件与Linux的安装和配置\t310
附录B Linux(Ubuntu 14.4)的基本命令与使用\t333
附录C GitHub代码托管平台\t338
附录D Docker技术与应用\t342
附录E 人工智能的数学基础与工具\t344
附录F 公开数据集介绍与下载\t355
附录G 人工智能的网络学习资源\t360
附录H 人工智能的技术图谱\t363
附录I 人工智能技术应用就业岗位与技能需求\t366
参考文献\t371

本目录推荐