Python 是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,得到越来越多开发者的喜爱,广泛应用于Web 开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析及其应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI 技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python 来做预测,不仅能够在业务上快速落地,还让代码维护更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。本书共分为3 篇。第1 篇介绍预测基础,主要包括预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握预测的基本步骤和方法思路。第2 篇介绍预测算法,该部分包含多元回归分析、复杂回归分析、时间序列及进阶算法,内容比较有难度,需要细心品味。第3 篇介绍预测案例,包括短期日负荷曲线预测和股票价格预测两个实例,读者可以了解到实施预测时需要关注的技术细节。希望读者在看完本书后,能够将本书的精要融会贯通,进一步在工作和学习实践中提炼价值。