本书总的指导思想是在掌握深度学习的基本知识和特性的基础上,培养使用TensorFlow 2.0进行实际编程以解决图像处理相关问题的能力。全书力求深入浅出,通过通俗易懂的语言和详细的程序分析,介绍TensorFlow 2.0的基本用法、高级模型设计及其应用程序编写。 本书共18章,内容包括:计算视觉与深度学习概述、Python的安装与使用、深度学习的理论基础、Python类库的使用、OpenCV的使用、OpenCV与TensorFlow的融合、TensorFlow概念、TensorFlow重要算法、Keras的使用、卷积层与MNIST实战、卷积神经网络公式推导与应用、TensorFlow Datasets和TensorBoard详解、ResNet、注意力机制、深度学习常用面试问题、GAN、图卷积神经网络等内容。 本书可作为学习人工神经网络、深度学习、TensorFlow 2.0程序设计以及图像处理等相关内容的程序设计人员培训和自学用书,也可以作为高等院校和培训学校相关专业的教材使用。