注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络人工智能TensorFlow深度学习应用开发实战

TensorFlow深度学习应用开发实战

TensorFlow深度学习应用开发实战

定 价:¥48.00

作 者: 谷瑞,陈强,谭冠兰 著
出版社: 清华大学出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787302549826 出版时间: 2020-07-01 包装: 平装
开本: 16 页数: 206 字数:  

内容简介

  随着人工智能技术的发展,深度学习成为最受关注的领域之一。在深度学习的诸多开发框架中,TensorFlow 是最受欢迎的开发框架。 本书以培养人工智能编程思维和技能为核心,以工作过程为导向,采用任务驱动的方式组织内容。全书共分为8 个任务,任务1 介绍深度学习的发展历程、应用领域以及开发环境的搭建过程;任务2 介绍TensorFlow 框架的基本原理、计算图、会话、张量等概念;任务3 和任务4 阐述全连接神经网络模型、神经网络优化方法及反向传播算法;任务5 和任务6 讨论卷积神经网络、卷积、池化的原理;任务7 和任务8演示网络模型可视化操作步骤及制作与解析数据集的方法。本书既可作为大数据、人工智能等相关专业应用型人才的教学用书,也可以作为TensorFlow 初学者的学习参考书。

作者简介

  谷瑞,副教授、苏州工业园区服务外包职业学院大数据技术与应用专业主任,苏州大学高级访问学者,英伟达计算机视觉与自然语言处理认证讲师,以第一作者发表SCI、EI检索论文5篇、主持省十三五教育科学规划课题1项、参与企业横向项目20余项,具有丰富的项目实战经验。

图书目录

目录
任务1深度学习简介与开发环境搭建1
1.1深度学习的发展及应用1
1.1.1深度学习的发展历程1
1.1.2深度学习的应用领域4
1.2深度学习框架简介7
1.2.1TensorFlow7
1.2.2Caffe8
1.2.3PyTorch8
1.2.4MXNet8
1.2.5不同框架的对比9
1.3开发环境搭建9
1.3.1Windows环境下的安装配置9
1.3.2Linux环境下的安装配置20
1.4本章小结25
1.5本章习题26
任务2构建二维数据拟合模型28
2.1TensorFlow运行机制28
2.1.1TensorFlow系统架构29
2.1.2构建计算图30
2.1.3在会话中运行计算图31
2.1.4指定GPU设备34
2.2TensorFlow数据模型35
2.2.1张量及属性35
2.2.2类型转换38
2.2.3形状变换39
2.3变量的定义与使用40
2.3.1变量的定义与初始化40
2.3.2随机初始化变量41
2.3.3获取变量42
2.3.4共享变量43
2.4占位符与数据喂入机制44
2.4.1占位符定义44
2.4.2数据喂入45
2.5模型的保存与恢复45
2.5.1模型保存45
2.5.2模型恢复47
2.6构建二维数据拟合模型48
2.6.1准备数据48
2.6.2搭建模型49
2.6.3反向传播49
2.6.4迭代训练50
2.6.5使用模型51
2.7本章小结51
2.8本章习题52
任务3构建泰坦尼克号生还率模型55
3.1M-P神经元拟合原理55
3.1.1M-P神经元模型55
3.1.2训练神经元58
3.2激活函数实现神经元非线化59
3.2.1激活函数的作用59
3.2.2Sigmoid激活函数59
3.2.3Tanh激活函数61
3.2.4Relu激活函数62
3.3BP神经网络模型63
3.3.1BP神经网络结构64
3.3.2神经网络向前传输推导65
3.3.3神经网络向前传输实践67
3.3.4构建BP神经网络模型68
3.4损失函数调整误差71
3.4.1交叉熵损失函数71
3.4.2均方误差损失函数72
3.5梯度下降72
3.5.1梯度下降的作用及常用方法72
3.5.2梯度下降使模型最小偏差实践74
3.6模型优化75
3.6.1学习率控制参数更新速度75
3.6.2正则化减少过拟合现象76
3.7构建泰坦尼克号生还率模型80
3.7.1数据读取及预处理80
3.7.2搭建向前传输过程82
3.7.3迭代训练82
3.8本章小结83
3.9本章习题83
任务4构建手写字识别模型86
4.1MNIST数据集86
4.1.1MNIST数据集简介86
4.1.2下载MNIST数据集88
4.1.3图像的矩阵表示89
4.1.4标签的独热表示90
4.2构建识别MNIST模型91
4.2.1MNIST手写字模型简介91
4.2.2定义模型节点参数92
4.2.3网络向前传输过程93
4.2.4网络参数优化94
4.2.5训练并保存模型95
4.3模型验证96
4.3.1验证集验证模型96
4.3.2识别自定义图片97
4.4本章小结100
4.5本章习题100
任务5LeNet-5模型识别手写字102
5.1卷积神经网络结构特征102
5.1.1卷积神经网络简介102
5.1.2卷积物理含义104
5.1.3网络结构特征106
5.2卷积神经网络函数108
5.2.1卷积操作108
5.2.2池化操作112
5.2.3DropOut机制116
5.3卷积高级操作118
5.3.1多通道卷积118
5.3.2多卷积核120
5.3.3反卷积122
5.4LeNet-5识别手写字124
5.4.1LeNet-5模型简介124
5.4.2构建向前传输模型125
5.4.3优化模型128
5.4.4训练保存模型130
5.4.5验证模型131
5.5本章小结132
5.6本章习题133
任务6打造CIFAR-10图像识别模型136
6.1CIFAR-10数据集简介136
6.1.1CIFAR-10数据集简介136
6.1.2下载CIFAR-10数据集137
6.2读取CIFAR-10数据138
6.2.1读取并显示图片138
6.2.2将标签表示成独热139
6.3数据增强140
6.3.1图像几何变换140
6.3.2图像色彩调整144
6.3.3图像的标准化146
6.3.4图像标注147
6.4构建CIFAR-10图像识别模型149
6.4.1数据批量读取149
6.4.2模型构建150
6.4.3训练并预测154
6.5ImageNet图像识别模型155
6.5.1ImageNet数据集简介155
6.5.2历代ImageNet识别模型156
6.6本章小结158
6.7本章习题158
任务7可视化性别识别模型160
7.1在程序中使用TensorBoard160
7.1.1TensorBoard基本介绍160
7.1.2TensorBoard使用步骤161
7.2TensorBoard可视化163
7.2.1标量与直方图可视化163
7.2.2卷积过程可视化167
7.2.3训练过程可视化171
7.3可视化性别识别模型174
7.3.1模型简介174
7.3.2读取数据集175
7.3.3训练模型176
7.3.4可视化模型179
7.4本章小结180
7.5本章习题180
任务8理解tf.data数据处理框架182
8.1Dataset的基本机制182
8.1.1Dataset数据处理框架182
8.1.2创建Dataset183
8.2Iterator迭代数据集184
8.2.1单次迭代器184
8.2.2可初始化迭代器185
8.2.3可重新初始化迭代器186
8.2.4可馈送迭代器187
8.3Dataset数据批处理188
8.3.1直接批处理188
8.3.2预处理后批处理189
8.4Dataset数据集构建与解析190
8.4.1数据集预处理190
8.4.2构建TFRecordDataset数据集191
8.4.3从tf.train.Example中解析数据192
8.5本章小结193
8.6本章习题194
附录人工智能数学基础196

本目录推荐