目录
第1章引论
第1节线性规划
第2节Torricelli点问题
第3节相关阵满足性问题
第4节最大割问题
小结
习题
第2章集合、空间和矩阵正定性
第1节集合、线性空间与范数
2.1.1集合与运算
2.1.2向量与线性空间
2.1.3空间、集合的维数与矩阵的秩
2.1.4行列式、迹、内积和范数
第2节矩阵正定性
第3节凸集与锥
2.3.1内点和相对内点、开集、闭集和相对开集
2.3.2凸集及其性质
2.3.3多面体
2.3.4锥
2.3.5锥半序
第4节对偶集合
小结
习题
第3章凸函数及可计算问题
第1节函数
第2节凸函数
第3节共轭函数
第4节可计算性问题
3.4.1离散模型
3.4.2连续模型
3.4.3离散优化的多项式时间近似方案和连续优化可计算
小结
习题
第4章最优性条件与对偶问题
第1节基于导数的最优性条件
4.1.1一阶最优性条件
4.1.2二阶最优性条件
第2节约束规范
第3节Lagrange对偶
4.3.1Lagrange对偶问题
4.3.2广义Lagrange对偶
4.3.3二次约束二次规划问题的Lagrange对偶模型
第4节共轭对偶
4.4.1共轭对偶在线性规划的应用
4.4.2共轭对偶与Lagrange对偶
第5节线性锥优化模型及最优性结论
小结
习题
第5章可计算线性锥优化模型
第1节线性规划
第2节二阶锥规划
5.2.1其他变形模型
5.2.2二阶锥可表示函数/集合概念
5.2.3常见的二阶锥可表示函数/集合
5.2.4二阶锥的应用
第3节半定规划
5.3.1一般形式
5.3.2线性矩阵不等式
5.3.3半定矩阵可表示集合/函数
5.3.4半定规划应用
第4节内点算法简介
第5节线性锥优化问题都可计算吗
小结
习题
第6章应用案例
第1节线性方程组近似与稀疏解
第2节投资管理问题
第3节单变量多项式优化
第4节鲁棒凸二次约束二次优化问题
小结
习题
第7章CVX使用简介
第1节使用环境和典型命令
第2节可计算凸优化规则及核心函数库
第3节参数控制及核心函数的扩展
小结
习题
参考文献
索引