序章
0.1 答案相同也“不同” 2
0.2 教学方法的保守性 3
0.3 教科书与教学制度的历史 4
0.4 黑封面教科书 5
0.5 绿封面教科书 7
0.6 蓝封面教科书 8
0.7 生活单元学习法 8
0.8 如今的制度 9
第 1章 量
1.1 广义的量 12
1.2 生物与环境 13
1.3 量是信息 14
1.4 教学中量的缺失 15
1.5 量的系统性教学 18
1.6 离散量和连续量 18
1.7 集合的个数 20
1.8 算盘和计算尺 21
1.9 量词和单位 22
1.10 外延量和内涵量 24
1.11 相加性 25
1.12 重量 26
1.13 单位的导入 27
1.14 直接比较 28
1.15 间接比较 28
1.16 个别单位 29
1.17 统一单位 30
1.18 时间 32
1.19 内涵量 33
1.20 密度的三种用法 35
1.21 从量到数 37
1.22 乘法的意义 38
1.23 分数的乘法 40
1.24 语言差异 40
1.25 度和率 42
1.26 高级的量 43
1.27 多维量 44
1.28 向量和矩阵 45
第 2章 数
2.1 一一对应 48
2.2 康托尔的集合论 49
2.3 序数 52
2.4 求剩和求差 53
2.5 数词与数字 56
2.6 原始社会的数词 57
2.7 欧洲的数词 58
2.8 心算和笔算 61
2.9 汉字数字和算术数字 62
2.10 数位和0 63
2.11 数数主义 65
2.12 向心算倾斜 67
2.13 数学应以笔算为中心 68
2.14 心算和数学 69
2.15 0 的含义 70
2.16 0 的历史 72
2.17 数位的原理 73
2.18 方便合并的方块 74
2.19 三者关系 77
2.20 加法 78
2.21 五·二进制 79
2.22 题目的数量 82
2.23 题目的分类和排序 83
2.24 减法 87
2.25 减减法和减加法 89
2.26 两步退位 90
2.27 乘法 91
2.28 日本的九九乘法表 93
2.29 除法 94
2.30 求商 98
2.31 分数·小数 101
2.32 比例分数 102
2.33 量和分数 103
2.34 分数运算 105
2.35 分数的乘法 109
2.36 分数的除法 111
第3章 集合与逻辑
3.1 集合是什么 116
3.2 无穷集合 118
3.3 集合的定义 119
3.4 要素 121
3.6 补集 124
3.7 交集 125
3.8 并集 127
3.9 德·摩根定理 128
3.10 空集 130
3.11 逻辑 132
3.12 命题 133
3.13 真和假 133
3.14 否定 135
3.15 联言 135
3.16 真值表 137
3.17 0 和1 的计算 139
3.18 公路网 140
3.19 all 和some 144
3.20 否定的模糊性 146
3.21 谓语和集合 148
3.22 直积 149
3.23 概率 150
第4章 空间与图形
4.1 古典几何学 154
4.2 方格几何 156
3.5 部分和整体 122
4.3 几何学与逻辑 158
4.4 公理的复杂性 160
4.5 不完全证明 160
4.6 一般与特殊 162
4.7 归纳和演绎 163
4.8 折线几何 165
4.9 投影图 168
4.10 球面几何学 170
4.11 球面过剩 173
4.12 纬度和经度 175
4.13 初等数论 176
4.14 算法 180
第5章 变数与函数
5.1 字母的含义 184
5.2 字母的变数含义 187
5.3 应用题 188
5.4 龟鹤算 190
5.5 函数的功能 197
5.6 自由落体定律 197
5.7 量的因果定律 198
5.8 符号 199
5.9 正比 200
5.10 函数与正比 203
5.11 映射 204
5.12 函数和图像 207
后记 209