定 价:¥598.00
作 者: | 刘静 著 |
出版社: | 上海科学技术出版社 |
丛编项: | |
标 签: | 暂缺 |
ISBN: | 9787547845325 | 出版时间: | 2019-12-01 | 包装: | |
开本: | 页数: | 340 | 字数: |
Chapter 1Introduction1
1.1Increasing Challenges in Advanced Cooling2
1.2Water Cooling and New Alternatives4
1.3Basic Features of Conventional Heat Exchangers6
1.3.1Heat Exchanger Classification by Geometry and
Structure7
1.3.2Heat Exchange Enhancement Techniques12
1.4Limitations of Waterbased Heat Exchanger13
1.4.1Overall Properties of Water13
1.4.2Adhesion and Cohesion14
1.4.3Surface Tension14
1.4.4Specific Heat14
1.4.5Conductivity15
1.5Liquid Metal Coolant for Chip Cooling15
1.6Some Facts about Liquid Metal17
1.7Revisit of Traditional Liquid Metal Cooling19
1.8Liquid Metal Enabled Innovation on Conventional
Heat Exchanger22
1.9Potential Application Areas of Liquid Metal Thermal
Management 23
1.9.1Chip Cooling23
1.9.2Heat Recovery25
1.9.3Energy System27
1.9.4Heat Transfer Process Engineering28
1.9.5Aerospace Exploration28
1.9.6Appliances in Large Power Systems29
1.9.7Thermal Interface Material29
1.9.8More New Conceptual Applications31
1.10Technical and Scientific Challenges in Liquid Metal
Heat Transfer 32
1.11Conclusion35
References36
Chapter 2Typical Liquid Metal Medium and Properties for Advanced
Cooling44
2.1Typical Properties of Liquid Metals45
2.1.1Low Melting Point45
2.1.2Thermal Conductivity45
2.1.3Surface Tension48
2.1.4Heat Capacity49
2.1.5Boiling Temperature50
2.1.6Subcooling Point50
2.1.7Viscosity51
2.1.8Electrical Properties52
2.1.9Magnetic Properties52
2.1.10Chemical Properties52
2.2Alloy Candidates with Low Melting Point53
2.2.1Overview53
2.2.2GaIn Alloy53
2.2.3NaK Alloy55
2.2.4Woods Metal55
2.3Nano Liquid Metal as More Conductive Coolant or Grease55
2.3.1Technical Concept of Nano Liquid Metal55
2.3.2Performance of Typical Nano Liquid Metals56
2.4Liquid Metal Genome towards New Material Discovery61
2.4.1About Liquid Metal Material Genome61
2.4.2Urgent Needs on New Liquid Metals62
2.4.3Category of Room Temperature Liquid Metal Genome62
2.5Fundamental Routes toward Finding New Liquid Metal Materials64
2.5.1Alloying Strategy from Single Metal Element64
2.5.2Making Composite from Binary Liquid Alloys65
2.5.3Realizing Composite from Multicomponent Liquid Alloys66
2.5.4Nano Technological Strategies66
2.5.5Additional Physical Approaches66
2.5.6Chemical Strategies67
2.6Fundamental Theories for Material Discovery68
2.6.1Calculation of Phase Diagram (CALPHAD)68
2.6.2First Principle Prediction69
2.6.3Molecular Dynamics Simulation69
2.6.4Other Theoretical Methods70
2.7Experimental Ways for Material Discovery70
2.8Theoretical and Technical Challenges71
2.9Conclusion73
References73Chapter 3Fabrications and Characterizations of Liquid Metal Cooling
Materials80
3.1Preparation Methods81
3.1.1Alloying81
3.1.2Oxidizing81
3.1.3Fabrication of Liquid Metal Droplets82
3.1.4Preparation of Liquid Metal Nano Particles83
3.1.5Coating of Liquid Metal Surface84
3.1.6Loading with Nano Materials86
3.1.7Compositing with Other Materials87
3.2Characterizations of Functional Liquid Metal Materials87
3.2.1Regulation of Thermal Properties88
3.2.2Regulation of Electrical Properties88
3.2.3Regulation of Magnetic Properties89
3.2.4Regulation of Fluidic Properties89
3.2.5Regulation of Chemical Properties89
3.3Liquid Metal as Energy Harvesting or Conversion Medium90
3.4Low Temperature Liquid Metal Used in Harsh Environment91
3.4.1Working of Liquid Metal under Cryogenic Situation91
3.4.2Basics about Cryogenic Cooling92
3.5Potential Metal Candidates with Melting Point below Zero
Centigrade 94
...........................
...........................
...........................
Flow487
11.4.3Convection Coefficient under Different Coolant Volume
Flow488
11.4.4Thermal Resistance under Different Pump Power489
11.4.5Flow Pattern Discrimination490
11.4.6Flow Resistance Comparison491
11.4.7Convective Heat Transfer Coefficient Comparison492
11.4.8Other Flowing Issues493
11.4.9Liquid Metal Alloybased Mini Channel Heat
Exchanger494
11.5Hybrid Mini/micro Channel Heat Sink Based on Liquid Metal and
Water494
11.5.1Hybrid Mini/micro Channel Heat Sink495
11.5.2Materials496
11.5.3Test Platform497
11.5.4Cooling Capability Comparison with Pure Water Cooling
System 498
11.6Flow and Thermal Modeling and Optimization of Micro/
mini Channel Heat Sink502
11.6.1About Micro/mini Channel Heat Sink502
11.6.2Flow and Thermal Model503
11.6.3Optimization of Micro/mini Channel Heat Sink505
11.6.4Micro Channel Water Cooling505
11.6.5Channel Aspect Ratio506
11.6.6Channel Number and Width Ratio507
11.6.7Velocity508
11.6.8Base Thickness509
11.6.9Structural Material510
11.6.10Mini Channel Liquid Metal Cooling510
11.6.11Mini Channel Water Cooling513
11.7Conclusion514
References515Chapter 12Hybrid Cooling via Liquid Metal and Aqueous Solution517
12.1Electrically Driven Hybrid Cooling via Liquid Metal and
Aqueous Solution518
12.1.1Coolants and Driving Strategy518
12.1.2System Designing519
12.1.3Continuous Actuation of Liquid Metal Spheres Circular
Motion 519
12.1.4Heat Transfer Performance520
12.1.5Thermal Resistance Components521
12.1.6Heat Transfer Capacity under Different Driving Voltages522
12.1.7Electrical Driving of Liquid Metal Droplet523
12.1.8Liquid Metal Droplets Periodic Circular Motion in
Different Conditions 524
12.1.9More Potential Coolants with Improved Performances525
12.2Alternating Electric Field Actuated Liquid Metal Cooling526
12.2.1Liquid Metal as Water Driving Pump526
12.2.2Performance of the Liquid Metal Droplet Driven Flow527
12.3Selfdriving Thermopneumatic Liquid Metal Cooling or
Energy Harvesting535
12.3.1Hybrid Coolants towards Automatic Heating Driving535
12.3.2Running of Thermopneumatic Liquid Metal Energy
Harvester536
12.4Hybrid Liquid Metalwater Cooling System for Heat Dissipation541
12.4.1Combined Liquid Metal Heat Transport and Water
Cooling541
12.4.2Working Performances of Combined Liquid Metal and
Water Cooling542
12.4.3Theoretical Analysis on Combined Liquid Metal and
Water Cooling547
12.5Electromagnetic Driving Rotation of Hybrid Liquid Metal and
Solution Pool551
12.5.1Electromagnetic Driving Rotation of Hybrid Fluids551
12.5.2Rotational Motion of Liquid Metal in Electromagnetic
Field552
12.5.3Controlling the Rotating Motion of Liquid Metal Pool555
12.5.4Liquid Metal Patterns Induced by Electric Capillary
Force559
12.6Dynamic Interactions of Leidenfrost Droplets on Liquid Metal
Surface566
12.7Conclusion574
References575Chapter 13Liquid Metal for the Harvesting of Heat and Energy577
13.1Direct Harvesting of Solar Thermal Power or Lowgrade Heat580
13.2Liquid Metalbased Thermoelectric Generation581
13.3Thermionic Technology587
13.4Liquid Metalbased MHD Power Generation589
13.5Alkali Metalbased Thermoelectric Conversion Technology590
13.6Direct Solar Thermoelectric Power Generation591
13.7Liquid Metal Cooled Photovoltaic Cell596
13.7.1Thermal Management for Optical Concentration Solar
Cells596
13.7.2Experimental System597
13.7.3Performance Evaluation598
13.7.4Theoretical Evaluation on Thermal Resistance601
13.8Solar Thermionic Power Generation605
13.9MHD and AMTEC Technology609
13.10Cascade System612
13.11Remarks and Future Developments614
13.12Harvesting Heat to Generate Electricity via Liquid Metal
Thermosyphon Effect616
13.13Liquid Metal Thermal Joint619
13.14Conclusion626
References626Chapter 14Combinatorial Liquid Metal Heat Transfer towards Extreme
Cooling630
14.1Proposition of Combinatorial Liquid Metal Heat Transfer630
14.2Basic Cooling System633
14.2.1Abstract Division of A Cooling System633
14.2.2Heat Acquisition Segment635
14.2.3Heat Rejection Segment637
14.2.4Heat Transport Segment637
14.3LMPM PCM Combined Cooling System639
14.3.1LMPM PCM Cooling639
14.3.2LMPM PCM Against Thermal Shock642
14.4Liquid Metal Convectionbased Cooling Systems642
14.5All Liquid Metal Combined Cooling System645
14.6Other Alternative Combinations645
14.7Conclusion646
References647Appendix653
Index656