定 价:¥69.00
作 者: | 于剑,封举富,张敏灵,俞扬 |
出版社: | 清华大学出版社 |
丛编项: | |
标 签: | 暂缺 |
ISBN: | 9787302544357 | 出版时间: | 2019-12-01 | 包装: | |
开本: | 16开 | 页数: | 240 | 字数: |
关于深度学习的一点思考
1 引言
2 深度神经网络
3 为何“深”
4 为何有必要探讨DNN之外的深度模型
参考文献
随机梯度下降郎之万动力学的泛化分析
1 介绍
2 基本设定
3 理想情况:Langevin方程的泛化性能
4 离散时间序列下SGLD的稳定性
5 离散情形下SGLD算法的PAC-Bayesian理论
6 结论
参考文献
A附录
因果和因果图模型
1 引言
2 因果
3 因果图模型
4 图模型空间
5 总结和讨论
参考文献
一致性学习理论研究
1 引言
2 相关工作
3 噪声环境下k近邻方法一致性
4 Pairwise损失函数一致性
5 总结与展望
参考文献
大规模分类任务的分层学习
1 引言
2 类别的层次结构
3 分层分类的性能评价
4 层次结构的构建
5 分层分类的特征选择
6 分层分类器学习
7 停止机制设计
8 总结与展望
参考文献
概念器的发展与应用
1 概念器模型
2 基于概念器的深度神经网络模型
参考文献
……
从谱聚类到自注意力模型——谈经典机器学习在深度学习时代的新形态
子空间学习研究进展与展望
主动学习研究简介
神经机器翻译
面向个性化教育的大数据分析方法研究与应用