《机器学习:使用OpenCV、Python和scikit-learn进行智能图像处理(原书第2版)》是一本基于OpenCV4和Python的机器学习实战手册,既详细介绍机器学习及OpenCV相关的基础知识,又通过具体实例展示如何使用OpenCV和Python实现各种机器学习算法,并提供大量示例代码,可以帮助你掌握机器学习实用技巧,解决各种不同的机器学习和图像处理问题。《机器学习:使用OpenCV、Python和scikit-learn进行智能图像处理(原书第2版)》共13章:第1章简要介绍机器学习基础知识,并讲解如何安装OpenCV和Python工具;第2章介绍基本的OpenCV函数;第3章讨论监督学习算法,以及如何使用OpenCV和scikit-learn实现这些算法;第4章讨论数据表示和特征工程,并介绍OpenCV中提供的用于处理图像数据的常见特征提取技术;第5章展示如何使用OpenCV构建决策树进行医疗诊断;第6章讨论如何使用OpenCV构建支持向量机检测行人;第7章讨论朴素贝叶斯算法、多项式朴素贝叶斯等技术及实现,并展示如何使用贝叶斯学习实现垃圾邮件过滤;第8章讨论一些无监督学习算法;第9章详细讲解如何构建深度神经网络来分类手写数字;第10章介绍用于分类的随机森林、bagging方法和boosting方法等;第11章讨论如何通过模型选择和超参数调优来比较各种分类器的结果;第12章介绍OpenCV4.0中引入的OpenVINO工具包;第13章给出一些处理实际机器学习问题的提示和技巧。OpenCV是用于构建计算机视觉应用程序的一个开源库。《机器学习:使用OpenCV、Python和scikit-learn进行智能图像处理(原书第2版)》将全面介绍新发布的OpenCV4版本所提供的大量新特性和平台改进。首先,你将了解OpenCV4的新特性并安装OpenCV4来构建计算机视觉应用程序。然后,你将探索机器学习的基础知识,学习设计用于图像处理的各种算法,循序渐进地掌握监督学习和无监督学习,并将获得使用Python中的scikit-learn开发各种机器学习应用程序的实践经验。接着,你将学习决策树、支持向量机(SVM)、贝叶斯学习等各种机器学习算法,以及如何将这些算法应用于目标检测等计算机视觉操作。之后,你将深入研究深度学习和集成学习,并探索它们在现实世界中的应用,如手写数字分类和手势识别等。最后,你将学习用于构建图像处理系统的英特尔OpenVINO工具包。学习完《机器学习:使用OpenCV、Python和scikit-learn进行智能图像处理(原书第2版)》,你将掌握使用OpenCV4构建智能计算机视觉应用程序所需要的机器学习技能。