《Python高维数据分析(英文版)/Python工程应用系列丛书》从矩阵计算如特征值分解和奇异值分解出发,讨论了正规方程的小二乘法模型引出欠秩线性方程组的求解方法问题;然后介绍了两种有损的降维方法,即主成分分析(主成分回归)和偏小二乘回归,包括模型、 算法和多个实例,并扩展到线性回归的正则化方法,给出了岭回归和Lasso的原理算法和实例;最后通过红外光谱的标定迁移实例将线性模型扩展到迁移学习领域。本书每章都有基于Python语言和Sklearn机器学习库的红外光谱数据集分析的实例。红外光谱集是关于物质吸光率的纯数据,可以与其标签标示的数据物质浓度直接进行回归分析,读者在阅读中可以把精力大限度地集中在高维数据的建模、 算法实现和分析过程上。《Python高维数据分析(英文版)/Python工程应用系列丛书》既可作为信息管理和信息系统专业、计算机相关专业和大数据专业的教学用书,也可作为从事光谱分析、 化学分析的工程人员及化学计量学研究人员的参考书,还适合对数据分析和研究感兴趣的其他Python工程师学习阅读。本书引用的原始文献和数据对上述人员是非常有帮助的。