本书从神经网络的基础知识讲起,逐步深入到Python进阶实战,通过对各种实用的第三方库进行详细讲解与实战运用,让读者不但能够更加深入地了解神经网络,而且能够简单高效地搭建自己的神经网络,即使没有专业背景知识也能轻松入门神经网络。 本书分为 11章,涵盖的主要内容有神经网络概述,神经网络基础知识,计算机程序的特点,神经网络优化算法,搭 建Python环境,Python基础知识,深度学习框架PyTorch基础知识,NumPy简介与使用,OpenCV简介与使用,OS遍历文件夹,Python中Matplotlib可视化绘图,Lenet-5、AlexNet、VGG16网络模型,回归问题和分类问题,猫狗识别程序开发,验证码识别程序开发,过拟合问题与解决方法,梯度消失与爆炸,加速神经网络训练的方法,人工智能的未来发展趋势等。 本书内容通俗易懂,案例丰富,实用性强,特别适合神经网络的零基础入门读者阅读,也适合 Python 程序员、PyTorch爱好者等阅读。