贯穿本书大部分内容的二维或三维空间的非欧几何,被视为与一组简单公理相关的、实射影几何的特例,这组公理涉及点、线、面、关联、序和连续性,未涉及距离或角度的测量。综述之后,作者从Von Staudt的思想——将点视为可以相加或相乘的实体——出发,引入齐次坐标。保持关联的变换称为直射变换,它们自然地导出等距同构或“全等变换”。遵循Bertrand Russell的建议,连续性用序来描述。通过特殊化椭圆或双曲配极——将点变换为线(二维)、面(三维),反之亦然——椭圆和双曲几何可从实射影几何派生而来。本书的一个不同寻常的特点是,它利用一般的线性坐标变换,来推导椭圆和双曲三角函数的公式。根据Gauss的巧妙想法,三角形面积与其角度之和有关。任何熟悉代数乃至群论基础的读者都可以从本书获益。第六版澄清了第五版的一些晦涩之处,新增的15.9节包含了作者非常有用的反演距离的概念。同世界知名教授H. S. M. Coxeter相比,没有哪个在世的几何学家可以把困难的题目写得更清晰、更优美。当非欧几何学第一次被提出时,它似乎仅仅关乎与现实世界毫无关系的好奇心。而令所有人惊讶的是,它竟然对爱因斯坦广义相对论至关重要!Coxeter的书绝版太久了,向MAA再版这本经典著作脱帽致敬。—Martin GardnerCoxeter的几何书籍是不应被丢失的珍品。我很高兴看到《非欧几何》重新出版。—Doris Schattschneider