对本书的赞誉
献词
前言
常见符号的标准用法
第0章 引言 1
从两张图说起 1
大数据与机器学习 4
计算 6
第 1章 不确定性 14
1.1 频率不确定性和bootstrap方法 14
1.2 假设检验和错误发现率控制 25
1.3 贝叶斯推断 33
第 2章 回归 37
2.1 线性模型 37
2.2 逻辑回归 46
2.3 偏差与似然 49
2.4 ◆回归不确定性 53
2.5 空间和时间 56
第3章 正则化 64
3.1 样本外预测效果 64
3.2 正则化方法 68
3.3 模型选择 77
3.4 ◆lasso的不确定性量化 87
第4章 分类 94
4.1 最近邻 94
4.2 概率、成本和分类 97
4.3 多元逻辑回归 102
4.4 分布式多元回归 106
4.5 分布式与大数据 110
第5章 实验 114
5.1 随机控制试验 115
5.2 近似实验设计 125
5.3 ◆工具变量 135
第6章 控制 143
6.1 条件可忽略性与线性处理效果 143
6.2 高维混淆变量调整 146
6.3 ◆样本分割与正交机器学习 148
6.4 异质性处理效果 152
6.5 合成控制法 164
第7章 分解 167
7.1 聚类 167
7.2 因子模型和主成分分析 173
7.3 主成分回归 180
7.4 偏最小二乘法 184
第8章 文本作为数据 189
8.1 分词 190
8.2 文本回归 194
8.3 主题模型 194
8.4 多元逆回归 200
8.5 协同过滤 204
8.6 词嵌入技术 206
第9章 非参数方法 209
9.1 决策树 210
9.2 随机森林 216
9.3 因果关系树 224
9.4 半参数方法与高斯过程 228
第 10章 人工智能 233
10.1 什么是人工智能 233
10.2 通用机器学习 237
10.3 深度学习 240
10.4 ◆SGD 244
10.5 强化学习 248
10.6 商业环境中的人工智能 251