第1章绪论(1)
1.1视频目标检测(1)
1.1.1域自适应算法和渐进自学习框架(2)
1.1.2基于域自适应学习的目标检测(2)
1.2相关滤波跟踪(3)
1.2.1基于多峰响应的抗遮挡相关滤波跟踪方法(5)
1.2.2自适应特征选择的相关滤波跟踪方法(5)
1.2.3基于孪生神经网络的抗形变相关滤波目标跟踪方法(6)
1.3图像质量评价(7)
1.3.1全参考图像质量评价方法简介(7)
1.3.2半参考图像质量评价方法简介(8)
1.3.3无参考图像质量评价方法简介(9)
1.4本章小结(10)
第2章域自适应算法及渐进自学习框架(11)
2.1引言(11)
2.2基于语义对齐的域自适应算法(12)
2.2.1域自适应方法(12)
2.2.2基于深度学习的图像语义提取(15)
2.3视觉域适应中的语义一致性约束(17)
2.3.1CSTN网络结构(17)
2.3.2CSTN损失函数(18)
2.4基于CSTN的渐进自学习框架(20)
2.4.1背景建模算法(21)
2.4.2双边界YOLO检测模型(23)
2.4.3在线渐进优化算法(25)
2.5本章小结(26)
第3章基于域自适应学习的视频目标检测(28)
3.1引言(28)
3.2视频目标检测研究现状(29)
3.2.1经典视频目标检测(29)
3.2.2特定场景目标检测(31)
3.2.3迁移学习(32)
3.2.4域自适应(33)
3.3神经网络和机器学习(33)
3.3.1神经网络的基本组成(33)
3.3.2损失函数与反向传播(35)
3.3.3深度模型中的优化(36)
3.4基于卷积神经网络的目标检测框架(37)
3.4.1卷积神经网络的基本原理(37)
3.4.2目标检测算法(39)
3.4.3YOLO(41)
3.5网络架构细节(43)
3.5.1网络架构(43)
3.5.2cycleGAN预训练(43)
3.5.3超参数设置(43)
3.6实验结果与分析(44)
3.6.1数据集与评价指标(44)
3.6.2行人检测实验(46)
3.7本章小结(55)
第4章基于多峰响应的抗遮挡相关滤波跟踪(57)
4.1引言(57)
4.2目标跟踪算法概述(59)
4.2.1基于传统相关滤波框架跟踪(60)
4.2.2基于尺度自适应的相关滤波跟踪(61)
4.2.3基于深度学习的相关滤波跟踪(62)
4.3核化相关滤波跟踪算法(62)
4.3.1一维岭回归(63)
4.3.2循环矩阵(63)
4.3.3核相关滤波(65)
4.3.4目标快速检测(67)
4.3.5尺度更新策略(67)
4.3.6模型更新(68)
4.4遮挡处理(69)
4.5数据集与评价指标(72)
4.5.1精度(72)
4.5.2成功率(72)
4.5.3一次通过性评估和鲁棒性评估(73)
4.6实验结果与实验分析(73)
4.6.1实验环境(74)
4.6.2实验分析(74)
4.7本章小结(79)
第5章自适应特征选择的相关滤波跟踪(80)
5.1引言(80)
5.2传统特征目标描述(82)
5.2.1颜色特征(82)
5.2.2梯度统计直方图特征(83)
5.3深度特征目标描述(85)
5.3.1卷积核与卷积操作(85)
5.3.2卷积神经网络模型(86)
5.3.3深度特征提取(87)
5.3.4融合深度特征(88)
5.4自适应特征选择分析(90)
5.4.1传统特征和深度特征跟踪性能分析(90)
5.4.2自适应选择特征(91)
5.5实验结果分析(93)
5.5.1与单特征相关滤波跟踪算法比较(93)
5.5.2与其他优秀相关滤波跟踪算法比较(94)
5.6本章小结(101)
第6章基于孪生神经网络的抗形变相关滤波跟踪(102)
6.1引言(102)
6.2孪生神经网络结构(104)
6.2.1相似度(104)
6.2.2孪生神经网络(105)
6.2.3损失函数计算(107)
6.3改进的孪生神经网络结构(108)
6.3.1改进的方法(108)
6.3.2滤波层设计(109)
6.3.3反向传播(110)
6.4孪生神经网络训练(111)
6.5融合多核特征(112)
6.6实验结果与分析(113)
6.7本章小结(119)
第7章全参考图像质量评价方法(120)
7.1引言(120)
7.2图像质量评价概述(121)
7.2.1图像质量评价应用(121)
7.2.2图像质量评价方法框架(122)
7.2.3全参考图像质量评价方法发展概况(126)
7.3基于结构相似度的图像质量评价方法(126)
7.3.1基于误差敏感度的图像质量评价方法(127)
7.3.2结构相似度理论(128)
7.3.3结构相似度特征图谱(130)
7.4显著性特征图谱与结构相似度相结合的评价方法(131)
7.4.1显著性特征图谱的定义(131)
7.4.2视觉显著性特征图谱与结构相似度结合算法描述(132)
7.5实验结果总结与分析(135)
7.5.1TID2008图像数据库简介(135)
7.5.2KRCC和SRCC(135)
7.5.3实验结果与说明(136)
7.6本章小结(147)
第8章半参考图像质量评价方法(149)
8.1引言(149)
8.1.1分类(150)
8.1.2研究重点(151)
8.1.3缺点(152)
8.2直方图之间的EMD(152)
8.2.1传统的EMD(152)
8.2.2基于权重的EMD(153)
8.3使用EMD的图像质量评价(154)
8.3.1基于SIFT特征局部EMD的图像质量评价(154)
8.3.2基于显著性特征全局EMD的图像质量评价(155)
8.3.3图像质量的整体评价(156)
8.4实验结果及评价(156)
8.5本章小结(159)
第9章无参考图像质量评价方法(161)
9.1引言(161)
9.2图像质量评价特征表示(163)
9.2.1尺度不变性特征变换(163)
9.2.2曲波变换(166)
9.2.3融合特征度量的实现(167)
9.3无参考图像质量预测(169)
9.3.1模糊化(170)
9.3.2分类(171)
9.3.3去模糊化(174)
9.4实验结果与分析(174)
9.4.1数据库介绍(174)
9.4.2评价指标(176)
9.4.3实验结果与分析(177)
9.5本章小结(179)
参考文献(181)