这是一本从基础、原理、实战、拓展4个维度系统讲解联邦学习的著作。 作者是人工智能领域的资深专家,现任某大型金融集团科技公司联邦学习团队负责人,这本书不仅得到了中外院士的联合推荐,而且得到了来自清华大学、华中科技大学、百度、蚂蚁集团、同盾科技等学术界和企业界的专家的一致推荐。 全书共9章,分为4个部分。 第1部分 基础(第1~2章) 主要介绍了联邦学习的概念、由来、发展历史、架构思想、应用场景、优势、规范与标准、社区与生态等基础内容,帮助读者建立对联邦学习的感性认知。 第二部分 原理(第3~5章) 详细讲解了联邦学习的工作原理、算法、加密机制、激励机制等核心技术,为读者进行联邦学习实践打好理论基础。 第三部分 实战(第6~7章) 主要讲解了PySyft、TFF、CrypTen等主流联邦学习开源框架的部署实践,并给出了联邦学习在智慧金融、智慧医疗、智慧城市、物联网等领域的具体解决方案。 第四部分 拓展(第8~9章) 概述了联邦学习的形态、联邦学习系统架构、当前面临的挑战等,并探讨了联邦学习的发展前景和趋势。