神经网络在深度学习和人工智能中发挥着非常重要的作用,其应用领域非常广泛,涵盖从医疗诊断、财务预测到机器诊断等多个领域。《神经网络设计与实现》旨在指导你以实用的方式学习神经网络。书中将简要介绍感知器网络,从而帮助你入门。然后,你将获得有关机器学习的见解,并了解人工智能的未来。接下来,你将研究如何使用嵌入来处理文本数据,并学习长短期记忆网络在解决常见自然语言处理问题中的作用。该书还将演示如何实现高级概念,包括迁移学习、生成对抗网络、自编码器和强化学习,以及有关神经网络领域新进展的更多内容。在完成该书的学习后,你将掌握构建、训练和优化自己的神经网络模型所需的技能,该模型能够提供可预测的解决方案。通过阅读该书,你将:●了解如何使用反向传播训练网络。●了解迁移学习的概念,以使用Keras和VGG网络解决任务。●探索如何加载和转换图像以用于神经网络。●掌握LSTM和NLP等高级、复杂的深度学习概念,以掌握新知识。●研究如何将神经网络应用于多个领域。●探索创新算法,例如生成对抗网络和深度强化学习。●解决神经网络开发面临的共同挑战。