Preface
1. Exploratory Data Analysis
Elements of Structured Data
Further Reading
Rectangular Data
Data Frames and Indexes
Nonrectangular Data Structures
Further Reading
Estimates of Location
Mean
Median and Robust Estimates
Example: Location Estimates of Population and Murder Rates
Further Reading
Estimates of Variability
Standard Deviation and Related Estimates
Estimates Based on Percentiles
Example: Variability Estimates of State Population
Further Reading
Exploring the Data Distribution
Percentiles and Boxplots
Frequency Tables and Histograms
Density Plots and Estimates
Further Reading
Exploring Binary and Categorical Data
Mode
Expected Value
Probability
Further Reading
Correlation
Scatterplots
Further Reading
Exploring Two or More Variables
Hexagonal Binning and Contours (Plotting Numeric Versus Numeric Data)
Two Categorical Variables
Categorical and Numeric Data
Visualizing Multiple Variables
Further Reading
Summary
2. Data and Sampling Distributions
Random Sampling and Sample Bias
Bias
Random Selection
Size Versus Quality: When Does Size Matter?
Sample Mean Versus Population Mean
Further Reading
Selection Bias
Regression to the Mean
Further Reading
Sampling Distribution of a Statistic
Central Limit Theorem
Standard Error
Further Reading
The Bootstrap
Resampling Versus Bootstrapping
Further Reading
Confidence Intervals
Further Reading
Normal Distribution
Standard Normal and QQ-Plots
Long-Tailed Distributions
Further Reading
Student's t-Distribution
Further Reading
Binomial Distribution
Further Reading
Chi-Square Distribution
Further Reading
F-Distribution
……
3. Statistical Experiments and Significance Testing
4. Regression and Prediction
5. Classification
6. Statistical Machine Learning
7. Unsupervised Learning
Bibliography
Index