《概率论与数理统计(人工智能专用)》介绍了与人工智能密切相关的概率论与数理统计的内容。全书分成两大部分,di一部分主要介绍概率论的知识,涵盖概率论的基本概念、一维随机变量及其分布、二维随机变量及其分布,数字特征,大数定理和中心极限定理外,还增加了信息论基础知识、若干集中不等式的相关知识。第二部分主要介绍常见的数理统计知识,包括抽样分布、参数估计(包括贝叶斯估计)、假设检验、方差分析。为了满足机器学习的两大目标任务:分类和预测,又介绍了回归分析和聚类分析。还介绍了概率论与数理统计的具体知识点在人工智能里的应用。在附录二给出了数理统计部分问题的python程序实现。在每一章每一小节后面配备各种题型的习题。每章后面配备本章的总复习题。习题分为两类:习题A可以作为对本章知识内容的考察,习题B中收集了历年研究生入学考试试题,有利于考研复习。本书适合从事机器学习的在校学生、高校研究者使用,也可作为高等理工科院校非数学专业的学生学习概率论与数理统计课程的教材使用。