本书深入浅出地讲解深度学习,对复杂的概念深挖其本质,让其简单化;对简单的概念深挖其联系,使其丰富化。从理论知识到实战项目,内容翔实。本书分为两篇,基础篇主要讲解深度学习的理论知识,实战篇是代码实践及应用。基础篇(第1~13章)包括由传统机器学习到深度学习的过渡、图像分类的数据驱动方法、Softmax损失函数、优化方法与梯度、卷积神经网络的各种概念、卷积过程、卷积神经网络各种训练技巧、梯度反传、各种卷积网络架构、递归神经网络和序列模型、基于深度学习的语言模型、生成模型、生成对抗网络等内容;实战篇(第14~19章)包括应用卷积神经网络进行图像分类、各种网络架构、网络各层可视化、猫狗图像识别、文本分类、GAN图像生成等。本书适合人工智能专业的本科生、研究生,想转型人工智能的IT从业者,以及想从零开始了解并掌握深度学习的读者阅读。