注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术工业技术水利工程生命线工程系统:网络可靠性分析与抗震设计

生命线工程系统:网络可靠性分析与抗震设计

生命线工程系统:网络可靠性分析与抗震设计

定 价:¥265.00

作 者: 李杰,刘威 著
出版社: 上海科学技术出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787547854167 出版时间: 2021-08-01 包装: 精装
开本: 页数: 110 字数:  

内容简介

  本书全面介绍了生命线系统网络分析和抗震设计的相关内容和**研究进展,突破了传统研究思路中重结构轻网络、重连通轻功能、重分析轻设计的问题,构建了从结构分析到网络功能分析再到网络设计的研究思路,在国际上首次实现了生命线工程网络连通可靠度的高效精确的递推分解算法、地震下带渗漏工作供水网络功能可靠度的精细化分析方法、生命线工程网络抗震优化设计以及复合生命线网络建模和仿真。研究成果对于生命线工程领域的研究和工程应用具有重要意义。利用上述理论研究成果,进行了上海、沈阳、郑州等多个大型城市供水、供气和电力系统的抗震分析和设计工作。同时,汶川地震后,成果应用于四川省都江堰、绵竹等多个受灾城市的震后恢复重建之中,得到了相关单位的高度评价。

作者简介

  李杰,同济大学特聘教授,博士生导师,上海防灾救灾研究所所长。1998年获国家杰出青年科学基金,1999年入选教育部“长江学者奖励计划”首批特聘教授。现兼任国际结构安全性与可靠性协会(IASSAR)执委会执委、国际土木工程风险与可靠性协会(CERRA)主席团成员,Structural Safety、International Journal of Nonlinear Mechanics等刊编委,中国振动工程学会副理事长、随机振动专业委员会主任,中国建筑学会结构计算理论专业委员会主任等学术职务。长期从事结构工程、地震工程、随机动力学和工程可靠性理论研究工作,在随机动力学、工程结构可靠度与生命线工程研究中取得了具有国际影响力的研究成果。2015年,工程结构抗灾可靠性设计的概率密度演化理论获得国家自然科学二等奖;2014年,因在概率密度演化理论与生命线工程可靠性方面的学术成就、被美国土木工程师学会(ASCE)授予Freudenthal奖章;2013年,因在随机动力学与生命线工程可靠性方面的学术成就、被丹麦王国奥尔堡大学授予荣誉博士学位;另外,围绕研究方向曾获国家科技进步奖以及上海市科技进步一等奖等科技奖励30余项。著有5部学术专。在国内外发表学术期刊论文400余篇,其中SCI收录120余篇、EI收录260余篇,研究论著被引用7000余次。刘威,博士、伦斯勒理工学院访问学者访问,同济大学土木工程学院副教授。专长于生命线地震工程领域,从事生命线地震工程研究。在国内外学术期刊及国际学术会议发表研究论文70余篇,其中SCI收录18篇,获上海市科学技术进步奖一等奖1项。

图书目录

1 Introduction .1
1.1Lifeline Engineering Systems1 
1.2Damages of Lifeline Systems in Past Earthquakes ..3 
1.3Main Content of the Book7 
References ..8 
2 Seismic Hazard Assessment11
2.1 Introduction ..11 
2.2 Uncertainty and Probability Model ..11
2.2.1 Earthquake Occurrence Probability Model ..12 
2.2.2 Potential SeismicZone .13 
2.2.3 Probability Distribution Function of Earthquake Magnitude.15 
2.2.4 Ground Motion Attenuation 16 
2.3 Seismic Hazard Analysis Method . 17
2.3.1 Point-Source Model .17 
2.3.2 Line-Source Model .20 
2.3.3 Area-Source Model 21 
2.3.4 Probability Distribution Function of Ground Motion Amplitude21
References23 
3 Seismic Ground Motion Model . 25
3.1Introduction.25 
3.2 Statistically-Based Model 26
3.2.1 Stationary and Non-stationary Processes 26 
3.2.2 One-Dimensional Stochastic Process Model28 
3.2.3 Random Field Model 30 
3.3 Physically-Based Model .34
3.3.1 Fourier Spectral Form of One-Dimensional Ground Motion 34 
3.3.2 Seismic Source Spectrum..35 
3.3.3 Transfer Function of the Path 37
3.3.4 LocalSite Effect . 38 
3.3.5 One-Dimensional Ground Motion Model .40 
3.3.6 Physical Random Field Model of Ground Motions ..41 References .43 
4 Seismic Performance Evaluation of Buried Pipelines . 45
4.1 Seismic Damage of Buried Pipelines .45
4.1.1 Pipeline Damage in Past Earthquakes ..45 
4.1.2 Damage Characteristics of Buried Pipelines .46 
4.1.3 Factors Affecting Buried Pipeline Damages . 47 
4.1.4 Empirical Statistics of Damage Ratio 48 
4.2 Seismic Response Analysis of Buried Pipelines 51
4.2.1 Pseudo-static Analysis Method .51 
4.2.2 Pipeline Stress Computation  58 
4.3 Seismic Response Analysis of Pipeline Networks . 60 
4.4 Seismic Reliability Evaluation of Buried Pipeline 64
4.4.1 Uncertainty of Pipeline Resistance  64 
4.4.2 Seismic Reliability Analysis of Buried Pipelines . 65 References.67
5 Seismic Response Analysis of Structures ..69
5.1 Structural Analysis Model 69
5.1.1 General Finite Element Model..69 
5.1.2 Seismic Analysis Model of Structure-Equipment
Systems..75 
5.1.3 Dynamic Analysis Model of Structure Subject to Multi-point Ground Motions .79
5.2 Deterministic Seismic Response Analysis of Structures . 81
5.2.1 Linear Acceleration Algorithm  82 
5.2.2 Generalized α-Algorithm  85 
5.3 Stochastic Seismic Response Analysis of Structures .88
5.3.1 Principle of Preservation of Probability. 88 
5.3.2 The Generalized Probability Density Evolution Equation .90 
5.3.3 Numerical Method for Solving General Probability Density Evolution Equation ..92
5.4 Seismic Reliability Analysis of Structures .96 References..99 
6 Seismic Reliability Analysis of Engineering Network (D—Connectivity Reliability..101 
6.1 Introduction .101 
6.2 Foundation of System Reliability Analysis 102
6.2.1 Basic Concepts of Graph Theory .102 
6.2.2 Structural Function of Network Systems..104 
6.2.3 Reliability of Simple Network System .. 107
6.3 Minimal Path Algorithm 108
6.3.1Adjacent Matrix Algorithm .108 
6.3.2 Depth First Search Algorithm ..110 
6.3.3 Breadth First Search Algorithm 112 
6.4 Disjoint Minimal Path Algorithm 112
6.4.1 Reliability Evaluation of Network System and Its Complexity .112 6.4.2 Disjoint Minimal Path Algorithm ..114 
6.4.3 Reliability Analysis Based on DMP Algorithm .116 
6.5 Recursive Decomposition Algorithm .117
6.5.1 Related Theorems 117 
6.5.2 RDA for Edge-Weighted Network .118 
6.5.3 RDA for Node-Weighted Network .122 
6.6 Cut-Based Recursive Decomposition Algorithm127
6.6.1 Minimal Cut Searching Algorithm .127 
6.6.2 Cut-Based Recursive Decomposition Algorithm .129 
6.7 Reliability Analysis of Network with Dependent Failure133 
6.8 Monte Carlo Simulation Method 135 References .136 
7 Seismic Reliability Analysis of Engineering Network (II)—The Functional Reliability .137 
7.1 Introduction .137 
7.2 Functional Analysis of Water Supply Network 137 
7.3 Functional Analysis of Water Supply Network with Leakage 140
7.3.1 Hydraulic equation of water supply network with leakage ..140 
7.3.2 Analysis method .141 
7.4 Seismic Functional Reliability Analysis of Water Supply Network 142 
References..148 
8 Aseismic Optimal Design ofLifeline Networks .149
8.1 Introduction ..149 
8.2 Network Topology Optimization Based on Connectivity
Reliability ..150 
8.2.1 Topology Optimization Model .150 
8.2.2 Genetic Algorithm ..150 
8.2.3 Examples .154 
8.3 Topology Optimization of Water Supply Network 155
8.3.1 Optimization Model .155 
8.3.2 Algorithms for Seismic Topology Optimization.157 
8.3.3 EXamples .158 
References16l
9 Simulation and Control of Composite Lifeline System ..163
9.1 Introduction .. ..163
9.2 Disaster Response Simulation ofComposite Lifeline System ..165
9.2.1 Fundamentals of Discrete Event Dynamic Simulation..165 
9.2.2 Simulation of Composite Lifeline Engineering System.167 
9.2.3 Disaster Simulation Model of Composite Lifeline System ..168 
9.2.4 Simulation Convergence Criteria and Simulation Statistics ..171 
9.3 Petri Net Model for Disaster Simulation of Composite Lifeline System ..172 
9.3.1 Classic Petri Net .172 
9.3.2 Non-Autonomous Colored Petri Net.174 
9.3.3 Seismic Disaster Simulation of Composite Lifeline System .175
9.4 Case Study on Seismic Disaster Simulation..177 
9.5 Urban Earthquake Disaster Field Control182
9.5.1 System ControlBased on Structural Behavior 182 
9.5.2 System Control Based on Investment Behavior ..184 
9.5.3 Case Study .186 
References.191
Appendix A: Boolean Algebra Basic...193 
Appendix B: Seismic Reliability Analysis of Transformer Substation ..199
Appendix C: Seismic Secondary Fire Analysis .205 
Bibliography 207

本目录推荐