注册 | 登录读书好,好读书,读好书!
读书网-DuShu.com
当前位置: 首页出版图书科学技术计算机/网络家庭与办公软件金融商业数据分析:基于Python和SAS

金融商业数据分析:基于Python和SAS

金融商业数据分析:基于Python和SAS

定 价:¥99.00

作 者: 张秋剑,张浩,周大川,常国珍 著
出版社: 机械工业出版社
丛编项:
标 签: 暂缺

购买这本书可以去


ISBN: 9787111695837 出版时间: 2021-12-01 包装:
开本: 16开 页数: 356 字数:  

内容简介

  这是一本金融商业数据分析的实战工具书。作者都是在金融行业有10~20年数据分析经验的资深专家,他们将多年来的项目经验、培训和咨询经验融合成了这本书。它将指导读者零基础掌握金融数据分析的工具、思路、方法和技巧,快速实现从入门到进阶的突破。本书强调实战,方法论与实践相结合,所有案例均来自实际的金融业务,涵盖工具使用、数据处理、统计分析等数据分析的全流程。本书内容共14章,可分为3篇。分析工具篇(第1~4章):首先介绍了数据科学和数理统计的基本常识,然后讲解了数据分析工具SAS EG和Python的基础知识。数据处理篇(第5~9章):首先通过描述性统计分析进行数据探索,继而讲到基本的报表和统计制图,还包括使用SAS EG进行数据处理,用Python进行数据整合、数据清洗,构建出满足分析需求的数据集。统计分析篇(第10~14章):从统计学的基本概念引出假设检验与样本t检验,三大统计检验、构造预测模型,并分享基于时间序列算法的建模方法。

作者简介

  张秋剑就职于腾讯云金融拓展中心,从事微信财富营销管理、数据中台、AI应用等解决方案拓展工作,研究方向包括数字化转型、创新实践等。张浩曾任腾讯云金融首席架构师和星环科技金融行业技术总监,主要从事大数据、人工智能、云计算、区块链、联邦学习等相关技术研发与产品设计,具有丰富的企业架构设计、企业数字化战略转型运营与业务咨询经验。周大川就职于某中央金融企业金融科技研发中心,主要从事企业级数据平台开发、核心业务平台建设、AI赋能金融科技创新等工作,具有丰富的新一代金融业务系统建设经验。常国珍曾任毕马威咨询大数据总监,具有近20年数据挖掘、精益数据治理、数字化运营咨询经验,是金融信用风险、反欺诈和反洗钱算法领域的专家。

图书目录

第1章 数据科学与数理统计2
1.1 数据科学的基本概念2
1.2 数理统计技术5
1.2.1 描述性统计分析5
1.2.2 统计推断与统计建模6
第2章 SAS EG数据操作基础8
2.1 SAS EG入门8
2.1.1 SAS EG简介8
2.1.2 SAS EG的窗口及菜单9
2.2 访问数据10
2.2.1 SAS EG实现方式11
2.2.2 SAS程序实现方式13
2.3 定义SAS数据集13
2.3.1 SAS数据的相关概念13
2.3.2 SAS EG实现方式16
2.3.3 SAS程序实现方式18
2.4 导入其他格式的数据文件19
2.4.1 SAS EG实现方式19
2.4.2 SAS程序实现方式21
第3章 Python编程基础22
3.1 Python概述22
3.2 Anaconda的安装及使用方法23
3.2.1 下载与安装23
3.2.2 使用Jupyter Notebook24
3.2.3 使用Spyder25
3.2.4 使用Conda管理第三方库27
3.3 Python的基本数据类型29
3.3.1 字符串29
3.3.2 浮点型和整型29
3.3.3 布尔类型30
3.3.4 其他数据类型31
3.4 Python的基本数据结构31
3.4.1 列表32
3.4.2 元组33
3.4.3 集合33
3.4.4 字典34
3.5 Python的编程结构35
3.5.1 三种基本的编程结构简介35
3.5.2 顺序结构35
3.5.3 分支结构36
3.5.4 循环结构37
3.6 Python的函数与模块40
3.6.1 Python的函数40
3.6.2 Python的模块42
3.7 使用Pandas读写结构化数据43
3.7.1 读数据43
3.7.2 写数据46
第4章 在SAS EG中使用程序47
4.1 如何在SAS EG中使用程序47
4.2 SAS程序49
4.2.1 SAS程序分析简介49
4.2.2 DATA步50
4.2.3 PROC步51
数据处理篇
第5章 描述性统计分析与制图54
5.1 描述性统计分析54
5.1.1 变量度量类型与分布类型54
5.1.2 变量的统计量56
5.1.3 连续变量的分布与集中趋势56
5.1.4 连续变量的离散程度58
5.1.5 数据分布的对称与高矮59
5.2 制作报表与统计图60
5.3 制图步骤及统计图适用场景64
5.4 利用SAS EG进行统计分析67
5.4.1 连续变量描述性统计分析67
5.4.2 单因子频数统计分析69
5.4.3 汇总统计分析72
5.4.4 绘制条形图进行统计分析76
5.4.5 绘制地图进行统计分析79
第6章 表数据的行处理82
6.1 数据筛选82
6.1.1 SAS EG实现方式82
6.1.2 SAS程序实现方式84
6.2 排序与求秩87
6.2.1 SAS EG实现方式87
6.2.2 SAS程序实现方式94
6.3 抽样95
6.3.1 抽样理论介绍95
6.3.2 SAS EG实现方式97
6.3.3 SAS程序实现方式99
6.4 数据分组和汇总100
6.4.1 SAS EG实现方式100
6.4.2 SAS程序实现方式102
第7章 表数据的列处理103
7.1 构造列变量103
7.2 拆分列105
7.3 堆叠列107
7.4 转置列110
7.4.1 SAS EG实现方式111
7.4.2 SAS 程序实现方式113
7.5 对列重编码114
7.5.1 SAS EG实现方式114
7.5.2 SAS程序实现方式119
7.6 变量标准化119
7.6.1 SAS EG实现方式120
7.6.2 SAS程序实现方式122
第8章 数据集的操作124
8.1 纵向连接124
8.1.1 SAS EG实现方式125
8.1.2 SAS程序实现方式127
8.2 横向连接131
8.2.1 SAS EG实现方式131
8.2.2 SAS程序实现方式135
8.3 数据集的比较138
8.3.1 SAS EG实现方式138
8.3.2 SAS程序实现方式141
8.4 创建格式142
8.4.1 相关理论介绍142
8.4.2 SAS EG实现方式143
8.4.3 SAS程序实现方式146
8.5 删除数据集、格式和视图147
8.5.1 SAS EG实现方式147
8.5.2 SAS程序实现方式148
第9章 利用Python处理数据149
9.1 数据整合150
9.1.1 行操作和列操作150
9.1.2 条件查询152
9.1.3 横向连接155
9.1.4 纵向合并157
9.1.5 排序159
9.1.6 分组汇总160
9.1.7 拆分与堆叠列163
9.1.8 赋值与条件赋值165
9.2 数据清洗167
9.2.1 重复值处理167
9.2.2 缺失值处理168
9.2.3 噪声值处理170
9.3 实战175
9.3.1 提取行为特征的RFM方法175
9.3.2 使用RFM方法计算变量176
9.3.3 数据整理与汇报177
统计分析篇
第10章 数据科学的统计推断180
10.1 基本的统计学概念180
10.1.1 总体、样本和统计量180
10.1.2 点估计、区间估计和中心极限定理181
10.2 假设检验186
10.2.1 理论介绍186
10.2.2 利用Python实现单样本t检验189
10.2.3 利用SAS EG实现单样本t检验189
10.2.4 利用SAS EG实现双样本t检验189
10.2.5 利用Python实现双样本t检验191
10.3 方差分析193
10.3.1 利用Python实现单因素方差分析193
10.3.2 利用SAS EG实现单因素方差分析198
10.3.3 利用Python实现多因素方差分析202
10.3.4 利用SAS EG实现多因素方差分析204
10.4 相关分析207
10.4.1 相关分析理论207
10.4.2 Python实现方式210
10.4.3 SAS EG实现方式210
10.5 列联表分析与卡方检验211
10.5.1 利用Python实现列联表分析212
10.5.2 利用SAS EG实现列联表分析213
10.5.3 利用Python实现卡方检验215
10.5.4 利用SAS EG实现卡方检验216
第11章 构造连续变量的预测模型219
11.1 线性回归模型介绍219
11.1.1 简单线性回归220
11.1.2 多元线性回归224
11.2 模型的构建226
11.2.1 多元线性回归模型的构建226
11.2.2 将连续变量和分类变量同时作为解释变量来构建模型228
11.3 线性回归模型的诊断230
11.3.1 残差230
11.3.2 强影响点234
11.3.3 共线性236
11.4 建模流程238
11.5 利用SAS EG实现客户价值预测239
11.5.1 单连续变量下建模239
11.5.2 多连续变量下建模242
11.5.3 加入分类解释变量建模243
第12章 构造二分类变量的预测模型245
12.1 逻辑回归入门245
12.2 模型表现优劣的评估251
12.3 多水平值分类变量的逻辑回归253
12.4 关于构造因果关系模型的讨论255
12.5 利用SAS EG实现贷款违约可能性预测257
第13章 描述性数据分析方法266
13.1 客户细分266
13.1.1 客户细分的意义266
13.1.2 根据客户利润贡献细分268
13.1.3 根据个人或公司的生命历程细分269
13.1.4 根据客户的产品偏好细分269
13.1.5 根据客户的多维行为属性细分270
13.1.6 根据客户结构细分271
13.1.7 综合应用272
13.2 连续变量间关系探索与变量压缩273
13.2.1 多元变量间关系统计基础273
13.2.2 多元变量压缩的思路276
13.2.3 主成分分析278
13.2.4 因子分析288
13.3 聚类分析293
13.3.1 基本逻辑293
13.3.2 层次聚类294
13.3.3 快速聚类301
13.3.4 两步法聚类308
第14章 时间序列分析314
14.1 时间序列及其分析方法简介314
14.2 利用效应分解法分析时间序列316
14.2.1 时间序列的效应分解316
14.2.2 SAS EG实现方式316
14.2.3 Python实现方式318
14.3 平稳时间序列分析322
14.3.1 平稳时间序列简介322
14.3.2 AR模型、MA模型、ARMA模型简介323
14.3.3 Python实现方式324
14.4 非平稳时间序列分析328
14.4.1 差分与ARIMA模型328
14.4.2 SAS EG实现方式330
14.4.3 Python实现方式336

本目录推荐