信息化、智能化技术的快速发展引发了数据爆发式增长,大数据时代的到来也伴随着信息过载问题的出现。推荐系统是解决信息过载问题的有效方法,作为现阶段推荐算法当中应用为广泛的个性化推荐算法之一,协同过滤推荐算法有着该领域内其他推荐算法无法比拟的诸多优点。但是在实际应用场景中,协同过滤推荐算法仍然有较多问题亟须解决。针对协同过滤推荐算法面对的数据稀疏性问题,《推荐系统关键技术的研究》分别采用数据填充方法、融合信任的概率矩阵分解模型、融合用户评分信息和项目评论特征的深度学习模型进行分析解决。针对协同过滤推荐算法面对的冷启动问题,《推荐系统关键技术的研究》分别采用K-means聚类算法与基于优化的遗传算法的K-means聚类混合算法进行分析解决。针对协同过滤推荐算法面对的扩展性问题,《推荐系统关键技术的研究》采用基于Hadoop平台MapReduce分布式计算、HDFS分布式存储模型进行算法并行化处理。同时,在真实的数据集上通过实验验证上述模型与算法的可行性与有效性。《推荐系统关键技术的研究》共分为6章,包括推荐系统、数据填充方法、K-means聚类算法、基于混合算法的推荐系统、基于信任关系的推荐系统和融合多源数据的推荐系统。《推荐系统关键技术的研究》可作为推荐系统研究方向高年级本科生和研究生的教材,也可供相关领域的技术人员和科研工作者阅读参考。