邵平 资深数据科学家,索信达控股金融AI实验室总监。在大数据、人工智能领域有十多年技术研发和行业应用经验。技术方向涉及可解释机器学习、深度学习、时间序列预测、智能推荐、自然语言处理等。现主要致力于可解释机器学习、推荐系统、银行智能营销和智能风控等领域的技术研究和项目实践。 杨健颖 云南财经大学统计学硕士,高级数据挖掘工程师,一个对数据科学有坚定信念的追求者,目前重点研究机器学习模型的可解释性。 苏思达 美国天普大学统计学硕士,机器学习算法专家,长期为银行提供大数据与人工智能解决方案和技术服务。主要研究方向为可解释机器学习与人工智能,曾撰写《可解释机器学习研究报告》和多篇可解释机器学习相关文章。