Chapter 1 Prerequisites for Calculus(微积分预备知识)
1.1 Sets and Intervals(集合与区问)
1.2 Definitions of Functions(函数的定义)
1.3 Properties of Functions(函数的性质)
1.4 Function Operations(函数的运算)
1.5 Basic Elementary Functions(基本初等函数)
1.6 Parametric Equations(参数方程)
1.7 Polar Functions(极坐标方程)
1.8 Transformations of Functions(函数图像的变换)
Practice Exercises(习题)
习题参考答案
Chapter 2 Limits and Continuity(极限和连续)
2.1 Definitions of Limits(极限的定义)
2.2 The Precise Definition of a Limit(极限的严格定义)
2.3 Theorems on Limits(极限的定理)
2.4 Computing Limits(极限的计算)
2.5 Asymptotes(渐近线)
2.6 Continuity(连续性)
2.7 连续函数定理
Practice Exercises(习题)
习题参考答案
Chapter 3 Definition of Derivative(导数的定义)
3.1 Definition of Derivative(导数的定义)
3.2 高阶导数
3.3 The Relationship between Differentiability and Continuity(可导与连续的关系)
3.4 不可导点的类型
Practice Exercises(习题)
习题参考答案
Chapter 4 Computation of Derivative(导数的计算)
4.1 Arithmetic Operations on Derivative(导数的代数运算)
4.2 Derivative of Inverse Function(反函数的导数)
4.3 Essential Fornmlas(基本公式)
4.4 Chain Rule(链式法则)
4.5 Implicit Function Derivative(隐函数的导数)
4.6 Logarithmic I)ifferentiation(对数求导法)
4.7 Parametric Function Derivative(参数方程的导数)
4.8 Polar Function Derivative(极坐标方程的导数)
Practice Exercises(习题)
习题参考答案
Chapter 5 Applications of Derivative(导数的应用)
5.1 Average and Instantaneous Rates of Change(平均变化率与瞬时变化率)
5.2 Tangents and Normals(切线和法线)
5.3 The Mean Value Theorem for Derivatives(微分中值定理)
5.4 Related Rates(相关变化率)
5.5 L'H6pital's Rule(洛必达法则)
5.6 Monotony of Functions(函数的单调性)
5.7 Concavity and the Point of Inflection(凹凸性与拐点)
5.8 Curve Sketching(函数图形的描绘)
5.9 Absolute Minimum Value and Absolute Maximum Value(最大值与最小值)
5.10 Motion Problems(运动问题)
Practice Exercises(习题)
习题参考答案
Chapter 6 Differential and Approximation(微分与近似计算)
6.1 Differentials(微分)
6.2 Approximating a Derivative Value(导数的近似计算)
6.3 Local Linear Approximation(局部线性近似)
6.4 Newton's Method(牛顿法)
Practice Exercises(习题)
习题参考答案
Chapter 7 Antidifferentiation(不定积分)
7.1 Definition of Antidifferentiation(不定积分的定义)
7.2 Integral by Substitution(换元积分法)
7.3 Integral by Parts(分部积分法)
7.4 Indefinite Integral of Rational Functions(有理函数的不定积分)
Practice Exercises(习题)
习题参考答案
Chapter 8 Definite Integrals(定积分)
8.1 Riemann Sums and Definite Integrals(黎曼和与定积分)
8.2 Approximation of Definite Integral(定积分的近似计算)
8.3 Properties of Definite Integrals(定积分的性质)
8.4 Fundamental Theorem of Calculus(微积分基本定理)
8.5 Operations on Definite Integrals(定积分的计算)
8.6 Improper Integral(反常积分)
Practice Exercises(习题)
习题参考答案
Chapter 9 Applications of the Integral to Geometry(定积分的几何应用)
9.1 The Element Method of Definite Integrals(定积分的元素法)
9.2 Area between Two Curves(由两条曲线所围成的图形的面积)
9.3 Volumes by Slicing(切片法求体积)
9.4 Length of a Plan Curve(平面曲线的弧长)
Practice Exercises(习题)
习题参考答案
Chapter 10 Differential Equations(微分方程)
10.1 Definitions of Differential Equations(微分方程的相关概念)
10.2 Separable Differential Equations(可分离变量的微分方程)
10.3 Numerical and Graphical Methods(微分方程的数值和图像解法)
10.4 Applications of First—Order Differential Equations(一阶微分方程的应用)
Practice Exercises(习题)
习题参考答案
Chapter 11 Sequences and Series(序列和级数)
11.