本书以通过FPGA实现简易神经网络的推理流程为主线,主要包含以下内容: 在TensorFlow学习框架下实现神经网络训练,保存训练好的权值和偏置;将TensorFlow框架下训练的神经网络使用OpenCL语言实现,并编译生成可执行文件和FPGA编程文件;将输入数据、权值、偏置等数据通过以太网口传输到FPGA开发板;在FPGA开发板上运行神经网络。本书的重点在于神经网络算法的OpenCL描述方法及FPGA实现流程。简易神经网络算法不仅可以让读者明白神经网络的工作原理及基本框架,还可以使用较少的OpenCL代码描述,易于分析神经网络算法与代码的对应关系,实现OpenCL语言的学习。本书以Ubuntu操作系统为运行环境,以***高的FPGA开发板DE10_nano为实现平台,该开发板尺寸较小,易于携带,方便管理,价格较低,适合批量购买以开展相关教学实验。本书面向电子信息、计算机、自动化等相关专业的本科生及研究生或FPGA开发人员。