前言
致谢
作者简介
符号和约定
第一部分 数据集的描述
第1章 查看数据的第一个工具 2
1.1 数据集 2
1.2 正在发生什么?绘制数据的图形 3
1.2.1 条形图 5
1.2.2 直方图 5
1.2.3 如何制作直方图 6
1.2.4 条件直方图 7
1.3 汇总一维数据 8
1.3.1 均值 8
1.3.2 标准差 9
1.3.3 在线计算均值和标准差 12
1.3.4 方差 13
1.3.5 中位数 13
1.3.6 四分位距 15
1.3.7 合理使用汇总数据 16
1.4 图形和总结 16
1.4.1 直方图的一些性质 17
1.4.2 标准坐标和正态数据 19
1.4.3 箱形图 21
1.5 谁的更大?澳大利亚比萨调查 22
问题 26
编程练习 26
第2章 关注关系 28
2.1 二维数据绘图 28
2.1.1 分类数据、计数和图表 28
2.1.2 序列 32
2.1.3 空间数据散点图 33
2.1.4 用散点图揭示关系 33
2.2 相关 37
2.2.1 相关系数 40
2.2.2 用相关性预测 43
2.2.3 相关性带来的困惑 46
2.3 野生马群中的不育公马 47
问题 49
编程练习 51
第二部分 概率
第3章 概率论基础 56
3.1 实验、结果和概率 56
3.2 事件 57
3.2.1 通过计数结果来计算事件概率 58
3.2.2 事件概率 60
3.2.3 通过对集合的推理来计算概率 62
3.3 独立性 64
3.4 条件概率 68
3.4.1 计算条件概率 69
3.4.2 检测罕见事件是困难的 71
3.4.3 条件概率和各种独立形式 73
3.4.4 警示例子:检察官的谬论 74
3.4.5 警示例子:Monty Hall 问题 75
3.5 更多实例 77
3.5.1 结果和概率 77
3.5.2 事件 78
3.5.3 独立性 78
3.5.4 条件概率 79
问题 81
第4章 随机变量与期望 86
4.1 随机变量 86
4.1.1 随机变量的联合概率与条件概率87
4.1.2 只是一个小的连续概率 90
4.2 期望和期望值 92
4.2.1 期望值 92
4.2.2 均值、方差和协方差 94
4.2.3 期望和统计 96
4.3 弱大数定律 97
4.3.1 独立同分布样本 97
4.3.2 两个不等式 98
4.3.3 不等式的证明 98
4.3.4 弱大数定律的定义 100
4.4 弱大数定律应用 101
4.4.1 你应该接受下注吗 101
4.4.2 赔率、期望与博彩:文化转向 102
4.4.3 提前结束比赛 103
4.4.4 用决策树和期望做决策 104
4.4.5 效用 105
问题 107
编程练习 110
第5章 有用的概率分布 112
5.1 离散分布 112
5.1.1 均匀分布 112
5.1.2 伯努利随机变量 112
5.1.3 几何分布 113
5.1.4 二项分布 113
5.1.5 多项分布 115
5.1.6 泊松分布 115
5.2 连续分布 117
5.2.1 均匀分布 117
5.2.2 贝塔分布 117
5.2.3 伽马分布 118
5.2.4 指数分布 119
5.3 正态分布 119
5.3.1 标准正态分布 120
5.3.2 正态分布 120
5.3.3 正态分布的特征 121
5.4 逼近参数为$N$的二项式 122
5.4.1 当$N$取值很大时 124
5.4.2 正态化 125
5.4.3 二项分布的正态逼近 127
问题 127
编程