2016年,一只阿法狗(AlphaGo)为全世界打开了一条窄窄的门缝,通往未来之路就此展现。通过超强硬件和大量的数据积累,人工智能浪潮第三次兴起。借助人工智能技术,公安部门可以轻松抓捕潜逃多年的罪犯,“AI换脸”已经成为普通用户的娱乐方式之一,智慧城市、自动驾驶开始在多个城市有试点GPT-3、Switch Transformer开启了新的时代,而智源研究院的悟道20参量则高达175万亿。训练有素的结构生物学家花费上千万美元历时多年的研究结果,AlphaFold v20在朝夕之间便完成预测。今天,主动拥抱新变化,积极学习新知识,愈发显得重要。很多人积极投入热情、时间和金钱后,没能坚持多久就中断了学习。也有很多同学对此表示观望甚至放弃,觉得凭自己的基础不足以把握这次机会。诚然,仅凭一本书很难帮助普通读者深刻理解并熟练掌握深度学习中的全部知识,因此“AI精研社”规划了一个系列图书,给出完整的解决方案,希望能帮助读者循序渐进、高效地成长为合格的人工智能算法实践者(practitioners)。本书是“人工智能与大数据技术大讲堂”系列图书的第2部。本书从体验手写数字(k近邻算法)识别开始,循序渐进地不断加深读者对神经网络模型的理解,进而可以设计并实现自己的模型。另外,本书通过Python+NumPy从零开始构建神经网络模型,强化读者对算法思想的理解,并通过TensorFlow构建模型来验证读者亲手从零构建的版本。前馈神经网络是深度学习的重要知识,其核心思想是反向传播与梯度下降。本书从极易理解的示例开始,逐渐深入,帮助读者充分理解并熟练掌握反向传播与梯度下降算法,为后续学习打下坚实的基础。本书延续理论与实践并重的风格,先以图文方式讲解算法思想,再以Python+NumPy实现算法,然后再给出TensorFlow实现的版本,帮助读者不断加深对核心的算法理解,同时提升实际动手能力,从而锻炼将算法思想转化为程序代码的能力。