目录
前言
第1章 绪论 1
1.1 变分原理——自然法则 1
1.2 交叉科学 2
1.2.1 社会科学方面 3
1.2.2 自然科学方面 3
1.3 半线性变分问题 5
第2章 拓扑与变分框架 10
2.1 拓扑空间 10
2.1.1 定义 10
2.1.2 度量空间 10
2.1.3 拓扑属性 11
2.1.4 紧致性 13
2.1.5 拓扑基 13
2.2 赋范线性空间和线性算子 14
2.2.1 赋范线性空间 14
2.2.2 有界算子 15
2.2.3 闭算子 16
2.2.4 自伴算子 19
2.2.5 自伴算子的谱族 20
2.2.6 自伴算子谱的性质 23
2.2.7 插值理论 24
2.3 变分框架 27
2.4 Lp-空间的基本性质 28
第3章 临界点理论 31
3.1 Lipschitz 单位分解 31
3.2 局部凸拓扑向量空间上的形变引理 40
3.3 临界点定理 50
第4章 Hamilton 系统的同宿轨 60
4.1 关于周期性 Hamilton 量的存在性和多重性结果 60
4.2 Hamilton 算子的谱 64
4.3 变分框架 65
4.4 环绕结构 67
4.5 (C)c-序列 70
4.6 主要结论的证明 79
4.7 非周期 Hamilton 算子 81
4.7.1 变分框架 82
4.7.2 环绕结构 87
4.7.3 (C)c-条件 89
4.7.4 定理 4.7.1 的证明 92
第5章 非线性 Schrodinger 方程 94
5.1 引言及主要结论 94
5.2 变分框架 97
5.3 环绕结构 98
5.4 (C)c-序列 101
5.5 存在性和多重性的证明 109
5.6 Schrodinger 系统半经典解 110
5.6.1 等价的变分问题 112
5.6.2 定理 5.6.3 的证明 117
5.6.3 定理 5.6.4 的证明 122
第6章 反应-扩散系统 125
6.1 引言 125
6.2 变分框架 127
6.3 反应-扩散系统无穷多几何解 133
6.3.1 基本引理 134
6.3.2 定理 6.3.1 的证明 138
6.3.3 定理 6.3.2 的证明 140
6.4 反应-扩散系统集中行为 141
6.4.1 抽象的临界点定理 143
6.4.2 修正泛函 155
6.4.3 群作用 159
6.4.4 几何结构与 G -弱紧性 160
6.4.5 自治系统 167
6.4.6 主要结论的证明 171
6.5 一些扩展 178
6.5.1 更一般的非线性 178
6.5.2 更一般的系统 179
第7章 非线性 Dirac 方程 189
7.1 引言 189
7.2 变分框架 191
7.3 带有非线性位势 Dirac 方程解的集中性 195
7.3.1 极限方程 199
7.3.2 极小能量解的存在性 201
7.3.3 衰减估计 208
7.3.4 定理 7.3.1 的证明 209
7.4 带有局部线性位势 Dirac 方程解的集中性 209
7.4.1 极限方程 219
7.4.2 改进方程解的存在性 227
7.4.3 定理 7.4.1 和定理 7.4.2 的证明 234
7.5 带有竞争位势 Dirac 方程解的集中性 235
7.5.1 极限方程 247
7.5.2 基态解的存在性 248
7.5.3 基态解的集中性和收敛性 253
7.5.4 衰减估计 257
7.5.5 定理 7.5.4 的证明 260
7.6 自旋流形上的 Dirac 方程 260
7.6.1 Dirac 算子 260
7.6.2 分歧现象 266
7.6.3 边值问题 277
参考文献 287