目录
译者的话
原书前言
第1章阅读本书前的准备
1.1Python的安装
1.1.1何为Python
1.1.2Homebrew的安装
1.1.3Python3的安装
1.1.4虚拟环境的创建
1.1.5为何使用venv(为何不用pyenv、anaconda)
1.2Python的使用方法
1.2.1输出Hello World!
1.2.2IPython的使用
1.2.3四则运算
1.2.4字符串的使用
1.2.5列表类型的使用
1.2.6字典类型的使用
1.2.7其他数据类型
1.2.8条件分支
1.2.9循环
1.2.10函数的使用
1.2.11类的使用
1.2.12标准库的使用
1.3Jupyter Notebook的安装和使用
1.3.1Jupyter Notebook的安装和启动
1.3.2Jupyter Notebook的使用
1.4NumPy、scikit-learn、matplotlib、Pandas的使用
1.4.1NumPy的安装和使用
1.4.2scikit-learn的安装和使用
1.4.3matplotlib的安装和使用
1.4.4Pandas的安装和使用
第2章机器学习在实际中的使用
2.1在工作中运用机器学习
2.1.1关于机器学习
2.1.2输入输出的格式化
2.1.3分析任务的本质
2.1.4实际问题的分析案例
2.2用样本数据尝试有监督学习
2.2.1尝试分类的案例
2.2.2运用决策树分类
2.2.3尝试解决实际问题
2.2.4解决实际问题的注意要点
2.3用样本数据尝试无监督学习
2.3.1无监督学习
2.3.2使用样本尝试scikit-learn
2.4小结
第3章机器学习基础理论
3.1数学知识的准备
3.1.1本节的学习流程
3.1.2为什么数学是必要的
3.1.3集合和函数基础
3.1.4线性代数基础
3.1.5微分基础
3.1.6概率统计基础
3.2机器学习的基础
3.2.1机器学习的目的
3.2.2技术性的假设和用语
3.2.3有监督学习概述
3.2.4从泛化误差看有监督学习
3.2.5无监督学习概述
3.3有监督学习
3.3.1分类模型的精度评价
3.3.2逻辑回归
3.3.3神经网络
3.3.4梯度提升决策树
3.4无监督学习
3.4.1混合高斯模型
3.4.2k-均值
3.4.3层次聚类
3.4.4核密度估计
3.4.5t-SNE
第4章数据的整合与处理
4.1机器学习中数据的使用流程
4.2数据的获取和整合
4.2.1数据结构的理解
4.2.2从结构化数据中读取数据
4.2.3读取数据
4.2.4分组聚合
4.2.5时间格式的操作方法
4.2.6合并
4.3数据的格式化
4.3.1数据种类的理解
4.3.2标准化
4.3.3缺省值
4.4非结构化数据的处理
4.4.1文本数据的预处理
4.4.2终端中MeCab的应用
4.4.3Python中MeCab的应用
4.4.4图片数据的处理
4.5不平衡数据的处理
4.5.1分类问题中的不平衡数据
4.5.2数据不平衡问题
4.5.3一般的处理方法
4.5.4样本权重的调整
4.5.5降采样法