深度学习是基于多层神经网络的机器学习的一个子集,可以解决自然语言处理和图像分类等领域中特别困难和大规模的问题。《Apache Spark深度学习实战》解析了技术和分析部分的复杂性,以及在Apache Spark上实施深度学习解决方案的速度。书中首先介绍了Apache Spark和深度学习的基础知识,包括为深度学习设置Spark,学习分布式建模的原理,了解不同类型的神经网络,深度学习中数据的提取、转换和加载,数据流的应用;然后介绍了在Spark上实现CNN、RNN和LSTM等深度学习模型,使用Spark训练神经网络,监控与调试神经网络的训练,神经网络的评估,在分布式系统上部署深度学习应用,自然语言处理基础,文本分析和深度学习,卷积和图像分类;最后对深度学习未来的发展作了一个简要概括。另外,书中还使用DL4J(大部分)、Keras和TensorFlow等流行的深度学习框架实现和训练分布式模型。学完本书,读者可获得理解和处理复杂数据集所需的实践经验。本书适合Scala开发人员、数据科学家或数据分析师学习,也适合所有想使用Spark实现高效深度学习模型的人工智能相关专业的学生和开发人员。