译者序
前言
第1章组合分析1
1.1引言1
1.2计数基本法则1
1.3排列2
1.4组合4
1.5多项式系数7
1.6方程的整数解个数10
第2章概率论公理20
2.1引言20
2.2样本空间和事件20
2.3概率论公理23
2.4几个简单命题25
2.5等可能结果的样本空间29
2.6概率:连续集函数37
2.7概率:确信程度的度量41
第3章条件概率和独立性51
3.1引言51
3.2条件概率51
3.3贝叶斯公式56
3.4独立事件65
3.5P(·|F)是概率79
第4章随机变量104
4.1引言104
4.2离散型随机变量107
4.3期望109
4.4随机变量函数的期望111
4.5方差114
4.6伯努利随机变量和二项随机变量117
4.6.1二项随机变量的性质121
4.6.2计算二项分布函数123
4.7泊松随机变量125
4.8其他离散型概率分布134
4.8.1几何随机变量134
4.8.2负二项随机变量136
4.8.3超几何随机变量138
4.8.4ζ分布141
4.9随机变量和的期望142
4.10累积分布函数的性质145
第5章连续型随机变量164
5.1引言164
5.2连续型随机变量的期望和方差166
5.3均匀随机变量169
5.4正态随机变量172
5.5指数随机变量180
5.6其他连续型概率分布185
5.6.1Γ分布185
5.6.2韦布尔分布186
5.6.3柯西分布187
5.6.4β分布187
5.6.5帕雷托分布189
5.7随机变量函数的分布190
第6章随机变量的联合分布204
6.1联合分布函数204
6.2独立随机变量210
6.3独立随机变量的和219
6.3.1独立同分布均匀随机变量219
6.3.2Г随机变量221
6.3.3正态随机变量222
6.3.4泊松随机变量和二项随机变量225
6.4离散情形下的条件分布226
6.5连续情形下的条件分布228
*6.6次序统计量232
6.7随机变量函数的联合分布236
*6.8可交换随机变量241
第7章期望的性质259
7.1引言259
7.2随机变量和的期望259
*7.2.1通过概率方法将期望值作为界269
*7.2.2关于值与小值的恒等式270
7.3试验序列中事件发生次数的矩272
7.4随机变量和的协方差、方差及相关系数279
7.5条件期望285
7.5.1定义285
7.5.2通过取条件计算期望286
7.5.3通过取条件计算概率294
7.5.4条件方差298
7.6条件期望及预测299
7.7矩母函数302
7.8正态随机变量的更多性质309
7.8.1多元正态分布309
7.8.2样本均值与样本方差的联合分布311
7.9期望的一般定义312
第8章极限定理335
8.1引言335
8.2切比雪夫不等式及弱大数定律335
8.3中心极限定理337
8.4强大数定律343
8.5其他不等式345
8.6用泊松随机变量逼近独立的伯努利随机变量和的概率误差界352
8.7洛伦兹曲线354
第9章概率论的其他课题364
9.1泊松过程364
9.2马尔可夫链366
9.3惊奇、不确定性及熵370
9.4编码定理及熵372
第10章模拟381
10.1引言381
10.2模拟连续型随机变量的一般方法383
10.2.1逆变换方法383
10.2.2舍取法384
10.3模拟离散分布388
10.4方差缩减技术390
10.4.1利用对偶变量390
10.4.2利用“条件”391
10.4.3控制变量392
附录A 部分习题答案396
附录B 自检习题解答399
索引444