Camassa-Holm方程是一类十分重要而又特别的新型浅水波方程,有广泛的应用背景。该类方程存在一类尖峰孤立子,并且它是完全可积的,具有双哈密顿结构和Lax对。《Camassa-Holm方程》给出该类方程的物理背景并阐述它的完全可积性。对该类方程的行波解作分类,获得多种奇异孤立波解;给出该类方程的谱图理论和散射数据;利用反散射方法,给出该类方程的多孤立子解。获得该类方程的整体强解的存在性及整体弱解的存在性;得到该类方程柯西问题的局部适定性;研究它们的blow-up问题以及尖峰孤立子解的轨道稳定性。《Camassa-Holm方程》同时研究含尖峰孤立子的Degasperis-Procesi方程及b族方程,研究前一类方程激波的形成及动力学分析,给出b族方程的水波结构和非线性平衡关系,对Degasperis-Procesi方程的适定性给出具体证明。