目录
前言
第1章 绪论 1
1.1 引言 1
1.2 含能材料研究现状 2
1.3 含能材料前沿发展方向 9
1.3.1 钝感高能材料结构设计新理论 9
1.3.2 含能材料制备新技术 11
1.3.3 含能材料应用新范畴 11
参考文献 13
第2章 含能材料性能理论研究 14
2.1 含能材料关键参数计算 14
2.1.1 密度预估 14
2.1.2 生成焓计算 15
2.1.3 爆热计算 18
2.2 含能材料感度预估 20
2.2.1 量子力学方法 21
2.2.2 定量结构-性质相关性法 22
2.3 含能材料力学性能 25
2.3.1 力学性能测试方法 25
2.3.2 力热耦合机制 31
2.3.3 结构形变模拟 32
2.4 含能材料反应活性理论研究 37
2.4.1 分子动力学理论及发展现状 37
2.4.2 含能材料在极端条件下的化学反应 38
2.5 含能材料爆轰性能理论研究 42
2.5.1 爆轰性能理论计算基础 43
2.5.2 爆轰性能预估软件 44
参考文献 45
第3章 含能材料的合成与制备 56
3.1 传统有机含能材料 56
3.1.1 高能硝胺化合物 56
3.1.2 钝感硝基化合物 59
3.1.3 含能增塑剂 76
3.1.4 含能催化剂 82
3.2 含能离子液体 84
3.2.1 唑类含能离子液体 84
3.2.2 季铵盐类含能离子液体 89
3.2.3 其他含能离子液体 90
3.3 高氮及全氮化合物 94
3.3.1 高氮化合物 94
3.3.2 全氮化合物 109
3.4 硝基芳烃化合物 114
3.4.1 离子液体中制备 114
3.4.2 无机固体酸催化作用下制备 118
3.4.3 过渡金属及镧系金属盐作用下制备 121
3.5 含能配合物 123
3.5.1 高氯酸类含能配合物 123
3.5.2 叠氮类含能配合物 126
3.5.3 硝酸类含能配合物 127
3.5.4 硝基酚类含能配合物 128
3.5.5 配位中心的作用 130
3.6 亚稳态分子间复合物 131
3.6.1 制备方法 131
3.6.2 基于金属氧化物的MICs 132
3.6.3 基于氟聚物的MICs 134
3.6.4 基于碘氧化物或碘酸盐的MICs 136
3.7 金属有机框架含能材料 141
3.7.1 中性MOFs 141
3.7.2 阳离子型MOFs 150
3.7.3 阴离子型MOFs 151
参考文献 153
第4章 含能材料的释能规律 169
4.1 含能材料热分解动力学 169
4.1.1 基辛格法 169
4.1.2 等转化率法 170
4.2 热分解反应物理模型计算方法 171
4.2.1 经验模型法 171
4.2.2 联合动力学分析法 173
4.2.3 样品受控热分析法 174
4.3 含能材料热分解机理 174
4.3.1 分解机理研究方法 174
4.3.2 推进剂分解产物与燃烧模型 175
4.3.3 热分解及燃烧机理的理论研究 176
4.4 含能材料燃烧特性 180
4.4.1 含能材料点火 180
4.4.2 铝粉氧化燃烧过程 182
4.4.3 铝粉燃烧效率影响因素 187
4.4.4 固体推进剂燃烧性能调控 191
4.5 含能材料燃烧转爆轰 195
4.5.1 燃烧转爆轰的研究方法 196
4.5.2 燃烧转爆轰影响因素 199
4.5.3 燃烧转爆轰机理 202
4.6 极端条件下含能材料的响应 203
4.6.1 极端条件的分类 203
4.6.2 超高压制备技术 205
4.6.3 含能材料高压响应 209
参考文献 214
第5章 含能材料的改性 225
5.1 含能材料颗粒的表面改性 225
5.1.1 晶体的表面无缺陷处理 225
5.1.2 晶体表面惰性包覆 226
5.2 含能材料的掺混改性 228
5.2.1 金属氧化物掺混含能复合物 228
5.2.2 杂化复合含能晶体 230
5.3 含能材料的重结晶与共晶 231
5.3.1 材料晶体学基本理论 231
5.3.2 含能材料重结晶技术 232
5.3.3 含能材料共晶技术 234
5.4 含能材料的纳米化改性 240
5.4.1 纳米含能材料的优势 240
5.4.2 纳米单质含能材料 242
5.5 碳纳米材料改性含能材料 243
5.5.1 碳纳米管基含能材料 243
5.5.2 氧化石墨烯基含能材料 256
5.5.3 石墨烯基含能材料 262
5.5.4 热解碳改性含能材料 264
5.5.5 功能化富勒烯含能材料 265
参考文献 272
第6章 复合含能材料的配方设计及应用 283
6.1 高能固体推进剂 283
6.1.1 NEPE高能固体推进剂 283
6.1.2 CL-20高能固体推进剂 285
6.1.3 HNF高能固体推进剂 286
6.1.4 ADN高能固体推进剂 289
6.1.5 含储氢材料的高能固体推进剂 293
6.2 绿色液体推进剂 295
6.2.1 绿色单组元液体推进剂 295
6.2.2 绿色双组元液体推进剂 300
6.2.3 高能原子液体推进剂 303
6.3 低烟焰发射药 304
6.3.1 低焰发射药 304
6.3.2 低烟发射药 307
6.4 聚合物炸药 310
6.4.1 聚合物炸药概述 310
6.4.2 基于RDX的PBX 310
6.4.3 基于HMX的PBX 311
6.4.4 基于CL-20的PBX 313
6.4.5 基于TATB的PBX 314
6.5 火工药剂 315
6.5.1 火工药剂概述 315
6.5.2 点火药 316
6.5.3 照明剂 319
6.5.4 延期药 322
6.5.5 烟雾剂 324
参考文献 325
第7章 含能材料的安全与环保要求 331
7.1 感度 331
7.1.1 机械感度 331
7.1.2 静电火花感度 333
7.1.3 冲击波感度 333
7.1.4 能量密度与安全性的制约关系 334
7.1.5 感度理论及内在机制 336
7.2 相容性与安定性 339
7.2.1 相容性和安定性的评价方法 339
7.2.2 相容性研究现状 342
7.3 易损性 344
7.3.1 低易损性弹药的研究背景 344
7.3.2 低易损性弹药的评价标准 346
7.3.3 低易损性弹药的现状 347
7.4 含能材料的毒性与环保含能材料 347
7.4.1 含能材料毒性内涵 347
7.4.2 含能材料环保原料 349
7.4.3 环保型含能材料 352
7.5 含能材料的绿色工艺 355
7.5.1 绿色制造技术概述 355
7.5.2 绿色合成工艺 356
7.5.3 绿色制造工艺 358
7.6 废旧含能材料的回收利用 359
7.6.1 废旧含能材料的来源和性质 359
7.6.2 废旧含能材料的再利用途径 360
7.6.3 废旧含能材料的回收再利用技术 361
参考文献 364
附录 369
A1 国外主要含能材料研究机构简介 369
A2 重要学术会议 380