第1章引言
1.1选题的背景及意义
1.2铝合金结构的特点和工程应用
1.2.1铝合金结构的特点
1.2.2铝合金结构的应用现状
1.3环槽铆钉的特点与应用
1.3.1环槽铆钉的紧固原理与特点
1.3.2环槽铆钉的工程应用
1.4铝合金结构连接与节点的研究现状
1.4.1铝合金材料力学性能
1.4.2铝合金结构连接的力学性能
1.4.3铝合金节点的力学性能
1.4.4现有研究的不足
1.5国内外规范中铝合金结构连接与梁柱节点的设计方法
1.5.1铝合金结构受剪连接的设计方法
1.5.2铝合金结构T形连接的设计方法
1.5.3铝合金梁柱节点的设计方法
1.5.4现有设计方法的局限性
1.6本书主要研究内容
第2章环槽铆钉力学性能与承载力研究
2.1概述
2.2环槽铆钉预紧力的测量
2.3环槽铆钉的承载性能试验研究
2.3.1钉杆材料力学性能试验
2.3.2铆钉多角度拉伸试验
2.4环槽铆钉精细化数值模型
2.4.1模型的建立与验证
2.4.2铆钉拉脱过程受力机理分析
2.5钉帽拉脱承载力的计算方法
2.5.1铝合金帽铆钉的拉脱承载力FPO,a
2.5.2不锈钢帽铆钉的拉脱承载力FPO,s
2.6简化模型的实现与关键参数推导
2.7环槽铆钉承载力设计方法及其验证
2.8本章小结
第3章环槽铆钉受剪连接受力机理与设计方法研究
3.1概述
3.2材料力学性能试验
3.3铝合金板件抗滑移系数和表面粗糙度测量
3.4受剪连接拉伸试验
3.4.1试验方案
3.4.2试件破坏形态
3.4.3极限承载力与荷载位移曲线
3.4.4试验结果与现行规范对比
3.5受剪连接的有限元模型
3.5.1材料本构关系
3.5.2单元类型与网格划分
3.5.3边界条件,荷载与接触
3.5.4基于应力三轴度的材料破坏准则
3.5.5有限元模型验证
3.6受剪连接工作机理和影响因素分析
3.6.1受剪连接中摩擦力的分布规律
3.6.2铆钉端距的影响分析
3.6.3铝合金内板板厚的影响分析
3.6.4铆钉钉杆直径的影响分析
3.6.5铆钉边距的影响分析
3.6.6铆钉预紧力的影响分析
3.7铝合金结构环槽铆钉受剪连接的设计方法
3.7.1端部剪出的设计方法
3.7.2承压破坏的设计方法
3.7.3预紧力调节系数
3.7.4边距对试件承载力影响的设计考虑
3.7.5受剪连接的承载力校核
3.7.6受剪连接构造建议
3.8本章小结
第4章环槽铆钉T形连接受力机理与设计方法研究
4.1概述
4.2材料力学性能试验
4.3T形连接受拉试验
4.3.1试件设计
4.3.2试验装置与加载方案
4.3.3摄影测量
4.3.4试验结果与分析
4.4T形连接的有限元模型
4.4.1有限元模型的建立
4.4.2有限元模型的验证
4.5环槽铆钉T形连接受力机理分析
4.5.1T形连接中的撬力
4.5.2环槽铆钉预紧力的影响分析
4.5.3环槽铆钉直径的影响分析
4.5.4环槽铆钉滑移等效段长度的影响分析
4.5.5T形件翼缘腹板交接处倒角的影响分析
4.5.6T形件屈服线的分布规律
4.6铝合金结构环槽铆钉T形连接设计方法
4.6.1破坏模式的重新界定
4.6.2CSM: 考虑铝合金翼缘非线性行为的设计方法
4.6.3环槽铆钉受弯的影响
4.6.4设计方法及步骤总结
4.7本章小结
第5章环槽铆钉连接的铝合金梁柱节点承载性能试验与
有限元分析
5.1概述
5.2节点设计
5.2.1节点命名与主要参数
5.2.2角形连接件
5.2.3节点域加强构造
5.2.4环槽铆钉的类型、尺寸和紧固方式
5.2.5材料力学性能
5.2.6不锈钢与铝合金间的抗滑移系数
5.3试验方案
5.3.1试验装置
5.3.2循环加载方案
5.3.3量测方案
5.4静力试验结果与分析
5.4.1弯矩转角特性
5.4.2试验现象与破坏形态
5.4.3主要变形结果与分析
5.4.4关键参数的影响分析小结
5.5循环试验结果与分析
5.5.1滞回与骨架曲线
5.5.2试验现象与破坏形态
5.5.3角形件应变分布与分析
5.5.4耗能能力与延性分析
5.5.5节点的刚度退化
5.6梁柱节点的有限元模型
5.6.1有限元模型的建立
5.6.2静力有限元模型的验证
5.6.3循环有限元模型的验证
5.7本章小结
第6章环槽铆钉连接的铝合金梁柱节点承载性能设计方法
6.1概述
6.2梁柱节点的参数分析
6.2.1分析参数的选择
6.2.2角形件与铆钉的影响分析
6.2.3加强垫板的影响分析
6.2.4梁柱构件的影响分析
6.3初始刚度设计方法
6.3.1TSAC型节点
6.3.2TSWAC型节点
6.3.3设计方法验证
6.4承载能力设计方法
6.4.1TSAC型节点
6.4.2TSWAC型节点
6.4.3设计方法验证
6.4.4构造要求和承载力简化设计
6.5弯矩转角全曲线
6.6抗震设计建议
6.6.1抗震构造建议
6.6.2节点滞回模型
6.7本章小结
第7章结论与展望
7.1结论
7.2展望
参考文献
附录A环槽铆钉受剪连接有限元曲线验证汇总
附录B环槽铆钉受剪连接影响因素分析核心程序
附录C环槽铆钉T形连接有限元曲线验证汇总
在学期间发表的学术论文与研究成果
致谢
Contents
Chapter 1Introduction
1.1The Background and Significance of the Topic
1.2The Characteristics and Engineering Applications
of Aluminium Alloy Structures
1.2.1The Characteristics of Aluminium Alloy
Structures
1.2.2The Application Status of Aluminium Alloy
Structures
1.3The Characteristics and Engineering Applications of
SwageLocking Pins
1.3.1The Fastening Mechanism and Characteristics
of SwageLocking Pins
1.3.2The Engineering Applications of
SwageLocking Pins
1.4The Research Status of Aluminium Alloy Connections
and Joints
1.4.1The Mechanical Properties of Aluminium
Alloys
1.4.2The Structural Behaviour of Aluminium
Alloy Connections
1.4.3The Structural Behaviour of Aluminium
Alloy Joints
1.4.4Inadequacies of Existing Research Studies
1.5The Design Methods for Aluminium Alloy Connections
and BeamtoColumn Joints in Chinese and Foreign
Design Codes
1.5.1The Design Methods for Aluminium Alloy
Shear Connections
1.5.2The Design Methods for Aluminium Alloy
TStub Connections
1.5.3The Design Methods for Aluminium Alloy
BeamtoColumn Joints
1.5.4The Limitation of Existing Design Methods
1.6The Main Research Contents of Current Book
Chapter 2The Research on the Mechanical Properties and Resistances
of SwageLocking Pins
2.1General
2.2Measurements of Preloads of SwageLocking Pins
2.3Experimental Investigations on the LoadCarrying
Capacities of SwageLocking Pins
2.3.1Tensile Coupon Tests on the Pin Material
2.3.2Tensile Tests on SwageLocking Pins Under
MultiAngles
2.4Refined Finite Element (FE) Models for
SwageLocking Pins
2.4.1The Establishment and Validation of FE
Models
2.4.2The Analysis on the Mechanical Mechanism
of Collar PullOut
2.5The Calculation Method for the Resistances of the Collar
to PullOut
2.5.1Aluminium Alloy Collar FPO,a
2.5.2Stainless Steel Collar FPO,s
2.6The Realization of Simplified FE Models and the
Derivation of Key Parameters
2.7The Design Method for Resistances of SwageLocking
Pins and Validation
2.8Summary of This Chapter
Chapter 3The Research on the Mechanical Mechanism and Design
of SwageLocking Pinned Aluminium Alloy Shear
Connections
3.1General
3.2Material Tests
3.3Measurements of Slip Coefficients and Surface Roughness
of Aluminium Alloy Plates
3.4Tensile Tests on Shear Connections
3.4.1Test Programme
3.4.2Failure Modes of Specimens
3.4.3LoadCarrying Capacities and LoadDeformation
Curves
3.4.4Comparisons of Test Results and Predicted
Results by Existing Design Codes
3.5Finite Element Models of Shear Connections
3.5.1Constitutive Models
3.5.2Element Type and Mesh
3.5.3Boundary Conditions, Load and
Interactions
3.5.4Material Fracture Criterion Based on Stress
Triaxiality
3.5.5Validation of the Established FE Models
3.6Analyses on the Mechanical Mechanism and Influencing
Factors of Shear Connections
3.6.1Distribution Rule of Friction Forces in the
Shear Connection
3.6.2Influence Analysis of the End Distance of
the Pin
3.6.3Influence Analysis of the InnerPlate
Thickness
3.6.4Influence Analysis of the Pin Diameter
3.6.5Influence Analysis of the Edge Distance of
the Pin
3.6.6Influence Analysis of the Preload of the Pin
3.7Design Methods for the SwageLocking Pinned
Aluminium Alloy Shear Connections
3.7.1Design Methods for ShearOut Resistances
3.7.2Design Methods for Bearing Resistances
3.7.3Adjustment Coefficient of Preloads
3.7.4Design Consideration of the Influence of Edge
Distances on the Connection Resistances
3.7.5Resistance Verification of Shear Connections
3.7.6Design Recommendations for Shear
Connections
3.8Summary of This Chapter
Chapter 4The Research on the Mechanical Mechanism and Design of
SwageLocking Pinned TStub Connections
4.1General
4.2Material Tests
4.3Tensile Tests on TStub Connections
4.3.1Specimen Design
4.3.2Test Setup and Loading Scheme
4.3.3Video Gauge
4.3.4Test Results and Analyses
4.4Finite Element Models of TStub Connections
4.4.1Establishment of the FE Models
4.4.2Validation of the FE Models
4.5Analyses on the Mechanical Mechanism of SwageLocking
Pinned TStub Connections
4.5.1The Prying Force In TStubs
4.5.2Influence Analysis of the Preload of the Pin
4.5.3Influence Analysis of the Pin Diameter
4.5.4Influence Analysis of the Length of the
Equivalent Segment
4.5.5Influence Analysis of the Radius of the
WebtoFlange Fillet
4.5.6Distribution Rule of the Yield Line of the
TStubs
4.6Design Methods for the SwageLocking Pinned
Aluminium Alloy TStub Connections
4.6.1Redefinition of the Failure Modes
4.6.2CSM: The Design Method Considering the
Nonlinear Behaviour of Aluminium Alloy
Flanges
4.6.3The Influence of the Bending of the
SwageLocking Pin
4.6.4The Summary of the Design Methods and
Procedures
4.7Summary of This Chapter
Chapter5Experimental and Numerical Investigation on the
SwageLocking Pinned Aluminium Alloy
BeamToColumn Joints
5.1General
5.2Joint Design
5.2.1Specimen Label and Main Parameters
5.2.2Angle Cleats
5.2.3The Strengthening Measures of the Panel
Zone
5.2.4Type, Size and Fastening Method of the
SwageLocking Pin
5.2.5Material Properties
5.2.6Slip Coefficients Between the Stainless Steel and
Aluminium Alloy
5.3Test Programme
5.3.1Test Setup
5.3.2Loading Scheme of the Cyclic Test
5.3.3Measuring Scheme
5.4Results and Analyses of Monotonic Loading Tests
5.4.1MomentRotation Characteristics
5.4.2Test Phenomenon and Failure Modes
5.4.3Main Deformation Results and Analyses
5.4.4Summary of the Influence of Key
Parameters
5.5Results and Analyses of Cyclic Loading Tests
5.5.1Hysteresis and Skeleton Curves
5.5.2Test Phenomenon and Failure Modes
5.5.3Strain Distribution and Analyses of Angle
Cleats
5.5.4Analysis of EnergyDissipating Capacity and
Ductility
5.5.5Stiffness Degradation of the Joint
5.6Finite Element Models of the BeamtoColumn
Joints
5.6.1Establishment of the FE Models
5.6.2Validation of the Monotonic FE Models
5.6.3Validation of the Cyclic FE Models
5.7Summary of This Chapter
Chapter 6Design Method For Resistances of the SwageLocking Pinned
Aluminium Alloy BeamToColumn Joints
6.1General
6.2Parametric Studies of the BeamtoColumn Joints
6.2.1The Selection of the Parameter
6.2.2Influence Analysis of the Angle Cleat and
SwageLocking Pin
6.2.3Influence Analysis of the Bearing Plate
6.2.4Influence Analysis of the Beam and Column
Member
6.3Design Method for the Initial Stiffness
6.3.1TSAC Joints
6.3.2TSWAC Joints
6.3.3Verification of the Design Method
6.4Design Method for the Moment Resistances
6.4.1TSAC Joints
6.4.2TSWAC Joints
6.4.3Verification of the Design Method
6.4.4Constructional Requirements and Simplified
Design Method for Moment Resistances
6.5FullRange MomentRotation Curves
6.6Recommendations for Seismic Design
6.6.1Constructional Requirements for Seismic
Design
6.6.2Hysteresis Model for BeamtoColumn
Joints
6.7Summary of This Chapter
Chapter 7Conclusions and Outlook
7.1Conclusions
7.2Outlook
References
Annex ASummary of the Comparisons of Numerical and Experimental
LoadDeformation Curves of SwageLocking Pinned Shear
Connections
Annex BCore Program of the Parametric Studies on SwageLocking
Pinned Shear Connections
Annex CSummary of the Comparisons of Numerical and Experimental
LoadDeformation Curves of SwageLocking Pinned TStub
Connections
Curriculum Vitae, Publications During PhD Study and Other Research
Results
Acknowledgements