总目录
上册
第1章核裂变反应堆燃料龙冲生001
第2章弥散型核燃料应诗浩303
中册
第3章水冷核反应堆用锆合金姚美意栾佰峰457
第4章反应堆压力容器辐照效应及表征评价佟振峰杨文677
第5章核反应堆压力容器模拟钢热时效过程中显微组织的
变化王均安759
第6章核电站蒸汽发生器材料夏爽861
下册
第7章压水堆核电站核岛主设备材料在高温水中的应力腐蚀
开裂吕战鹏945
第8章材料辐照效应贺新福杨文1065
第9章核反应堆控制、慢化和冷却剂材料焦拥军1203
第10章快中子反应堆堆型材料谢光善1273
索引1393
上册目录
上册目录
第1章核裂变反应堆燃料龙冲生001
1.1裂变反应堆燃料概论003
1.1.1主要核反应及能量转换003
1.1.2裂变产物006
1.1.3燃耗008
1.1.4燃料辐照的一般现象009
1.1.5对燃料的一般要求016
1.1.6燃料的分类019
1.2陶瓷燃料019
1.2.1陶瓷燃料的种类020
1.2.2燃料基本性能025
1.2.3陶瓷燃料的辐照行为045
1.2.4应用经验084
1.2.5制造工艺086
1.3金属燃料126
1.3.1金属燃料的基本性质126
1.3.2金属燃料的辐照行为197
1.3.3金属燃料的使用经验217
1.3.4金属燃料的制造220
1.4可燃毒物燃料227
1.4.1可燃毒物燃料原理228
1.4.2可燃毒物的要求230
1.4.3可燃毒物的使用方式231
1.4.4可燃毒物燃料的制造233
1.4.5应用经验238
1.5钍基燃料240
1.5.1钍/铀循环的特点241
1.5.2钍基燃料性能249
1.5.3钍燃料应用经验267
1.5.4钍基燃料的制造268
1.6液体燃料272
1.6.1液体燃料的优势273
1.6.2液体燃料的性能277
1.6.3运行经验293
参考文献295
第2章弥散型核燃料应诗浩303
2.1概述305
2.2弥散型燃料的研究开发和应用306
2.2.1动力堆弥散型燃料306
2.2.2研究试验堆燃料313
2.3弥散型燃料理论325
2.3.1裂变碎片损伤区325
2.3.2理想弥散体330
2.3.3实际弥散型燃料333
2.4燃料元件的研究开发和鉴定337
2.4.1阶段: 候选燃料选择339
2.4.2第二阶段: 概念设计和可行性研究340
2.4.3第三阶段: 燃料设计改进和评价341
2.4.4第四阶段: 燃料鉴定和示范343
2.5弥散型燃料制造344
2.5.1燃料元件的制造研究开发344
2.5.2燃料芯体制备346
2.5.3弥散型燃料元件制造和燃料组件组装359
2.6弥散型燃料的热物理性能、力学性能和化学相容性370
2.6.1热物理性能371
2.6.2力学性能378
2.6.3化学相容性383
2.6.4固有安全的燃料设计400
2.7弥散型燃料的辐照稳定性403
2.7.1铀化物辐照的正常肿胀和加速肿胀403
2.7.2正常辐照肿胀404
2.7.3加速辐照肿胀(起泡等)410
2.7.4各种弥散型燃料的起泡阈值温度总结440
2.7.5提高燃料元件起泡阈值温度的途径443
参考文献448
核反应堆材料(中册)
第3章水冷核反应堆用锆合金姚美意栾佰峰457
3.1锆的基本性质459
3.1.1晶体结构459
3.1.2核性能460
3.1.3物理性能460
3.1.4化学性能461
3.1.5力学性能462
3.2锆的合金化463
3.2.1合金元素选择的原则463
3.2.2锆合金相图464
3.2.3锆合金的发展477
3.3锆和锆合金的制备482
3.3.1核级海绵锆的制备482
3.3.2锆合金型材的制备485
3.4锆合金的显微组织493
3.4.1锆合金的典型显微组织特征493
3.4.2锆合金中典型的第二相497
3.5锆合金的腐蚀行为505
3.5.1堆外腐蚀试验时常用的水化学条件及
腐蚀规律506
3.5.2合金成分对锆合金耐腐蚀性能的影响509
3.5.3热加工工艺对锆合金耐腐蚀性能的影响524
3.5.4水化学对锆合金耐腐蚀性能的影响529
3.5.5其他因素对锆合金耐腐蚀性能的影响530
3.6氧化膜特性与锆合金耐腐蚀性能之间的关系534
3.6.1ZrO2的相结构变化和特征534
3.6.2锆合金氧化膜的典型显微组织及其演化行为536
3.6.3锆合金中第二相的氧化行为557
3.6.4锆合金的耐腐蚀性能与氧化膜中的应力和缺陷
之间的关系567
3.6.5氧化膜生长各向异性特征570
3.6.6锆合金的初期氧化行为572
3.6.7锆合金氧化膜中和O/M界面处元素分布特征的
APT研究580
3.7锆合金腐蚀的相关机理584
3.7.1腐蚀转折机理585
3.7.2疖状腐蚀机理585
3.7.3ZrSn系锆合金在LiOH水溶液中腐蚀加速的
机理588
3.7.4ZrNb系锆合金在LiOH水溶液中腐蚀加速的
机理589
3.8锆合金的吸氢行为592
3.8.1氢的固溶度592
3.8.2氢化物析出行为593
3.8.3腐蚀吸氢594
3.8.4氢致延迟开裂605
3.9锆合金的力学性能610
3.9.1锆合金拉伸性能610
3.9.2锆合金的热蠕变性能616
3.9.3疲劳性能628
3.10锆合金在反应堆内的行为638
3.10.1辐照效应和辐照损伤638
3.10.2堆内的腐蚀和吸氢行为648
3.10.3锆合金包壳和燃料芯体的相互作用653
3.10.4锆合金包壳在失水事故下的行为655
3.11展望660
参考文献662
第4章反应堆压力容器辐照效应及表征评价佟振峰杨文677
4.1反应堆压力容器概述679
4.1.1反应堆压力容器设计680
4.1.2反应堆压力容器材料686
4.2反应堆压力容器材料辐照脆化机制693
4.2.1中子辐照引起的基体缺陷694
4.2.2溶质原子沉淀物696
4.2.3磷元素的偏析701
4.2.4压力容器钢辐照脆化的影响因素702
4.3辐照对压力容器钢力学性能的影响708
4.3.1压力容器钢力学性能概述708
4.3.2压力容器的断裂失效模式711
4.3.3辐照后材料力学性能的测试技术712
4.3.4辐照硬化与辐照脆化720
4.4在役反应堆压力容器的性能评估727
4.4.1压力容器材料辐照后关注的力学性能728
4.4.2压力容器监督项目728
4.4.3中子参数测量733
4.4.4辐照温度监测734
4.4.5目前用于评估压力容器脆化的方法735
4.4.6压力容器的“船型取样”740
4.4.7压力容器的退火和再辐照742
4.5辐照对压力容器运行的影响744
4.5.1辐照对压力容器运行影响的概述744
4.5.2反应堆压力容器完整性调整参数746
4.5.3断裂韧性曲线748
4.5.4压力温度运行限值曲线751
4.5.5承压热冲击753
4.5.6缓解措施753
4.5.7许可事项754
参考文献754
第5章核反应堆压力容器模拟钢热时效过程中显微组织的
变化王均安759
5.1RPV模拟钢热时效过程中原子团簇析出行为762
5.1.1富铜原子团簇析出初期特征762
5.1.2富铜原子团簇长大过程中的成分变化767
5.1.3纳米富铜相析出及长大过程中晶体结构的
变化771
5.1.4富铜析出相的晶体结构、尺寸大小与化学成分
之间的相关性795
5.2合金元素和杂质元素磷对RPV模拟钢中富铜原子团簇
析出的影响797
5.2.1镍的影响797
5.2.2镍和锰的影响803
5.2.3硅的影响810
5.2.4磷的影响815
5.2.5RPV模拟钢热时效过程中CuNiMnSi
团簇的形成816
5.3缺陷对富铜原子团簇析出过程的影响822
5.4溶质和杂质原子在晶界以及相界面的偏聚特征822
5.4.1相界面处不同元素原子的偏聚823
5.4.2αFe晶界处不同元素原子的偏聚833
5.4.3位错处几种元素原子的偏聚838
5.4.4热时效过程中磷在相界面上的偏聚842
5.5纳米富铜相的析出对RPV模拟钢韧脆转变温度的
影响848
5.6纳米富铜相的变形行为850
5.6.1未变形的纳米富铜相851
5.6.2滑移变形的纳米富铜相852
5.6.3孪生变形的纳米富铜相853
5.6.4形变诱发相变的纳米富铜相854
参考文献856
第6章核电站蒸汽发生器材料夏爽861
6.1蒸汽发生器的作用及结构863
6.2轻水堆SG传热管材料866
6.2.1传热管选材的演变866
6.2.2传热管的加工制造简介874
6.2.3传热管的特殊热处理对晶界碳化物析出及晶界
贫铬的影响876
6.2.4镍基合金的有序化888
6.2.5晶界工程在传热管材料中的应用890
6.3SG传热管与管板的连接方式894
6.4SG支撑板的材料及设计895
6.5SG传热管在高温高压水中的性能降级896
6.5.1SG传热管内/外侧水化学899
6.5.2镍基合金在高温高压水中形成的氧化膜903
6.5.3应力腐蚀开裂912
6.5.4腐蚀疲劳926
6.5.5传热管的微动磨损、磨损以及减薄928
6.5.6点蚀929
6.5.7凹陷930
6.5.8耗蚀930
6.6部分第四代核电反应堆SG材料930
6.6.1快堆SG主要材料931
6.6.2高温气冷堆SG材料932
参考文献933
核反应堆材料(下册)
下册目录
第7章压水堆核电站核岛主设备材料在高温水中的应力腐蚀
开裂吕战鹏945
7.1前言947
7.1.1压水堆核电站核岛主设备构件材料948
7.1.2压水堆核电站冷却剂的水化学条件951
7.1.3压水堆核电站核岛主设备典型构件材料的环境
损伤951
7.2压水堆核电站核岛主设备典型构件的应力腐蚀开裂952
7.2.1镍基合金及焊接金属构件952
7.2.2不锈钢构件956
7.2.3反应堆堆内构件辐照促进应力腐蚀开裂简介957
7.3不锈钢与焊接金属应力腐蚀开裂的特征及其影响因素964
7.3.1微结构与预形变的影响 965
7.3.2温度对应力腐蚀开裂的影响987
7.3.3载荷对应力腐蚀开裂的影响992
7.3.4水介质中溶解氢和溶解氧对应力腐蚀开裂的
影响993
7.4镍基合金与焊接金属应力腐蚀开裂特征及影响因素1007
7.4.1材料特性对应力腐蚀开裂的影响1007
7.4.2环境因素对应力腐蚀开裂的影响1030
7.5核电站核岛主设备材料在高温水中应力腐蚀开裂机理
及其预测模型1039
7.5.1应力腐蚀开裂模型及主要特征1040
7.5.2高温水中应力腐蚀开裂力学电化学耦合机制及
裂纹扩展模型1043
7.5.3基于形变/氧化交互作用应力腐蚀开裂模型的
适用性分析1048
7.5.4基于形变/氧化交互作用应力腐蚀开裂模型的
应用验证1055
参考文献1058
第8章材料辐照效应贺新福杨文1065
8.1材料辐照效应简介1067
8.1.1材料辐照损伤的基本过程1068
8.1.2材料辐照效应发展历史、现状及趋势1070
8.1.3材料辐照效应的研究方法1071
8.2粒子与物质相互作用1072
8.2.1二体碰撞过程及能量传递1074
8.2.2级联碰撞1082
8.2.3损伤速率及损伤剂量1091
8.2.4表面损伤1092
8.3点缺陷特性及微观结构演化1093
8.3.1点缺陷的特征及相互作用1094
8.3.2点缺陷与位错、晶界等相互作用1101
8.3.3微观结构演化与速率理论1103
8.4辐照硬化与脆化1114
8.4.1辐照硬化微观机理1116
8.4.2RPV钢的辐照硬化与脆化1119
8.4.3铁素体/马氏体钢的辐照硬化与脆化1122
8.4.4辐照后奥氏体不锈钢的拉伸性能1127
8.5辐照肿胀与辐照蠕变1130
8.5.1辐照肿胀1131
8.5.2辐照蠕变1149
8.5.3辐照肿胀与蠕变的关系1180
8.6辐照生长与辐照疲劳1183
8.6.1辐照生长1183
8.6.2辐照疲劳1186
8.7模拟辐照技术1189
8.7.1电子辐照1189
8.7.2离子辐照1191
8.8辐照损伤的多尺度模拟1192
8.8.1欧盟RPV钢辐照脆化多尺度模拟1193
8.8.2美国RPV钢辐照脆化多尺度模拟1196
参考文献1197
第9章核反应堆控制、慢化和冷却剂材料焦拥军1203
9.1控制材料1205
9.1.1对控制材料的要求1206
9.1.2银铟镉1207
9.1.3含有硼的控制材料1212
9.1.4硼酸1217
9.1.5铪1220
9.1.6钆1234
9.2慢化剂1237
9.2.1中子慢化的基本原理1238
9.2.2重水1247
9.2.3石墨1252
9.2.4铍和其他慢化剂材料1257
9.3冷却剂材料1262
9.3.1主要功能和要求1262
9.3.2轻水及其蒸汽1265
9.3.3二氧化碳和氦气1267
9.3.4液态金属钠1270
参考文献1272
第10章快中子反应堆堆型材料谢光善1273
10.1概论1275
10.1.1快堆和热堆1275
10.1.2有效利用铀资源1277
10.1.3快堆燃料组件结构1280
10.1.4燃料组件制造1284
10.1.5燃料后处理1286
10.2快堆燃料1287
10.2.1燃料选择准则1288
10.2.2燃料发展史1288
10.2.3混合氧化物燃料1291
10.2.4混合氧化物燃料堆内性能1293
10.2.5氧化物燃料化学1330
10.2.6先进型快堆燃料1333
10.3快堆结构材料1337
10.3.1选材准则1338
10.3.2结构材料发展史1340
10.3.3奥氏体不锈钢的晶体结构1346
10.3.4奥氏体不锈钢的辐照性能1347
10.3.5包壳腐蚀1365
10.3.6高镍合金1369
10.3.7铁素体马氏体钢1371
10.4燃料棒破损1375
10.4.1破损的产生1375
10.4.2燃料棒破损前的T0状态1377
10.4.3气体泄漏和钠进入1378
10.4.4氧化物燃料与钠反应及其后果1379
10.4.5包壳破损和DND信号1380
10.5燃料组件性能1383
10.5.1外套管形变1384
10.5.2燃料棒束性能1389
参考文献1391
索引1393