随着大数据时代的到来,社会经济现象中的海量数据处理面临很多问题,一方面需要从数据中寻找社会经济现象的共同变化规律,另一方面还需要对高维数据进行降维。因子分析方法恰好能做到这两点。因此,在大型数据集处理中因子模型被广泛使用。为了与宏观和行业因子模型区别开来,这里统计的因子是指需要通过统计方法进行估计的潜在因子。潜在因子的统计分析主要采用因子模型实现,如果与其他统计模型相结合,能够形成各种类型的统计因子模型。《高维面板数据因子模型:理论、方法与应用》从因子模型的理论基础人手,结合面板数据进行分析,阐述几种常见的因子模型的基本形式并结合应用予以推广;着重介绍因子模型的设定、估计和应用;提出三种新的高维面板数据因子模型:高维面板数据动态混合双因子模型、高维受限因变量面板数据因子模型、高维面板数据因子随机波动模型。分别介绍了三种模型的基本类型设定以及估计方法,并将其应用于解决经济金融领域的实际问题。这几类模型虽然构造形式各异,但是都有各自的应用场合。其中的大多数方法在实践中都可以结合统计软件予以实现。因子模型的应用领域包括经济学、金融学、社会学、消费者行为研究,等等。