随着人工智能、区块链、深度学习等技术在金融领域的广泛应用,通过对海量金融数据进行分析、归纳,挖掘出潜在的模式,研究市场运行规律,可以帮助企业调整策略,降低风险,提高效益。然而随着新技术的广泛应用,在挖掘规则的同时,可能会泄露用户的敏感信息。在金融大数据背景下,涉及到用户的数据量较大,如果这些数据中的隐私信息被泄露将对用户造成巨大伤害。为了避免用户在金融大数据环境下访问服务过程中敏感信息被泄露,本书将提出三种新方法来保护用户的隐私数据:①将环签名技术引入到金融大数据环境。②设计隐私策略匹配模型和匹配协议,保护金融大数据环境下用户的隐私信息。③设计最小属性泛化算法,提出基于最小属性泛化技术保护金融大数据环境下用户的隐私数据;针对所设计的最小属性泛化算法,通过仿真实验验证该算法的正确性和隐私保护度。