本书系统全面地阐述了对偶学习,可以帮助相关研究人员和从业者更好地了解该领域的前沿技术。全书分为五部分。第一部分简要介绍机器学习和深度学习的基础知识。第二部分以机器翻译、图像翻译、语音处理及其他自然语言处理/计算机视觉任务为例,详细介绍了基于对偶重构准则的算法。算法包括对偶半监督学习、对偶无监督学习、多智能体对偶学习等。关于图像翻译,介绍了包括CycleGAN、DualGAN、DiscoGAN、cdGAN在内的算法以及近期发展。第三部分介绍基于概率准则的若干研究,包括基于联合概率准则的对偶有监督学习和对偶推断,以及基于边缘概率准则的对偶半监督学习。第四部分从理论角度解读了对偶学习,并且讨论了和其他学习范式的联系。第五部分总结了全书内容并给出若干未来研究方向。本书还就进一步阅读提供了建议,给出了相关文献,以帮助读者深入了解该领域、推动该领域的发展。